The color of apparel products have a close relationship with the face skin colors of consumers. In order to extract the favorable colors which flatter to consumer's face skin colors, this study was carried our to classify the face skin colors of Korean females. The criteria that select new subjects who have the classified face skin colors have to be decided. With color spectrometer, JX-777, face skin colors of subjects were measured and classified into three clusters that had similar hue, value and chroma with Munsell Color System. Sample size was 324 Korean females and other new 10 college girls. Data were analyzed by K-means cluster analysis, ANOVA, Duncan multiple range test, Stepwise discriminant analysis using SPSS Win. 12. Findings were as follows: 1. 324 subjects who have YR colors were clustered into 3 face skin color groups. 2. Discriminant variables of face skin colors were 5 variables : b value of cheek, V value of forehead, L value of cheek, C value of forehead and H value of cheek by the standardized canonical discriminant function coefficient 1. 3. Hit ratio of type 1 was $96.8\%$, of type 2 was $94.9\%$, of type 3 was $100.0\%$ and mean of hit ratio was $96.9\%$ by canonical discriminant function of 5 variables. 4. With the unstandardized canonical discriminant function coefficient and constant, canonical discriminant function equation 1 and 2 were calculated. And cutting score and range of score of the classified types were computed. The criteria that select the new subjects were decided.
The purpose of this study was to test the discriminant analysis model of Quick Response system and to examine the detailed relationship between each discriminant factor and Quick Response adoption. In this discriminant analysis model of Quick Response system, firm size, strategic type, product category, fashion trend, selling time and the Quick Response benefits were included as discriminant factors. Onehundred and two subjects were randomly selected for the survey study and discriminant analysis, descriptive analysis, t-test, and x square test were used for the data analysis. The results of this study were: 1. Wilks Lambda and F value support the discriminant analysis model that, taken together firm size, strategic type, product category, fashion trend, selling time and the Quick Response benefits significantly help to explain Quick Response adoption. 2. The importance of discriminant ability was, in order, firm size, the Quick Response benefits, women's wear, fashion trend, analyzer, selling time, reactor, defender and men's wear. 3. The discriminant function had the high hit ratio, so this can be well used for the classification of Quick Response adoption/nonadoption.
The color of apparels has the interaction of the face skin colors of the wearers. This study was carried out to classify the face skin colors of Korean males into several similar face skin colors in order to extract favorable colors which flatter to their face skin colors. The criterion that select the new subjects who have the classified face skin colors have to be decided. With color spectrometer, JX-777, face skin colors of subjects were measured quantitatively and classified into three clusters that had similar hue, value and chroma with Munsell Color System. Sample size was 418 Korean males and other 15 of new males subjects. Data were analyzed by K-means cluster analysis, ANOVA, Duncan multiple range test, Stepwise discriminant analysis using SPSS Win. 12. Findings were as follows: 1. 418 subjects who have YR colors were clustered into 3 kinds of face skin color groups. 2. Discriminant variables of face skin colors was 4 variables : L value of forehead, v value of cheek, c value of forehead, and b value of cheek from standardized canonical discriminant function coefficient 1 and c value of forehead, L value of forehead, b value of cheek. and L value of cheek from standardized canonical discriminant function coefficient 2. 3. Hit ratio of type 1 was $92.3\%$, of type 2 was $96.5\%$ and of type 3 was $92.6\%$ by the canonical discriminant function of 4 variables. 4. The canonical discriminant function equation 1 and 2 were calculated with the unstandardized canonical discriminant function coefficient and constant, the cutting score, and range of the score were computed. 5. The criterion that select the new subjects who have the classified face skin colors was decided.
This study purported to acquire information necessary to improve the management of general hospitals. It tried to determine major indices which represent managerial performance of general hospitals and to identify the managerial characteristics of general hospitals which affect the major financial indices. Eighty-eight hospitals were chosen from 188 hospitals which were subject to standardization audit by the Korean Hospital Association. The results of a discriminant analysis are summarized as followings. First, when a single index was used to measure managerial performance of the sample hospitals, the ration of net profit to total capital was the best index and its discriminant power was 58.14%. The ratio of the number of boardmen((M. D.) and average daily medical cost were highly related to this index. Second, when two indices were used, income growth rte and the ration of net profit to total capital had the highest discriminant distinction ability. Their discriminant power was 61.9%. In this case, the ratio of the number of boardmen(M. D.) was significantly and highly related to the indices. Third, when all three indices-income growth rate, the ration of net profit to total capital and quick ratio - were used together, a discriminant function was statistically insignificant. Therefore, using all three indices was not useful in measuring managerial performance of the sample hospitals. In conclusion, using two indices-income growth rate and the ration of net profit to total capital-was better in measuring manegerial performance of general hospitals than using a single index. The independent variable which affected these indices was the ration of the number of boardmen. The discriminant function was : $D_{GI}=2.77+4.832\times(the ratio of the number of boardmen)$ *G=growth index(income growth rate) *I=profit index(the ration of net profit to total capital)
In this paper, we compares the business failure prediction accuracy among Linear Programming Discriminant Analysis(LPDA) model, Multivariate Discriminant Analysis (MDA) model and logit analysis model. The Data for 417 companies analyzed were gathered from KIS-FAS Published by Korea Information Service in 1999. The result of comparison for four time horizons shows that LPDA Is advantageous in prediction accuracy over the other two models when over all tilt ratio and business failure accuracy are considered simultaneously.
Purpose: The purpose of this study was evaluated to compare the predictive power of distress prediction models by using discriminant analysis method and logit analysis method for food service franchise industry in Korea. Research design, data and methodology: Forty-six food service franchise industry with high sales volume in the 2017 were selected as the sample food service franchise industry for analysis. The fourteen financial ratios for analysis were calculated from the data in the 2017 statement of financial position and income statement of forty-six food service franchise industry in Korea. The fourteen financial ratios were used as sample data and analyzed by t-test. As a result seven statistically significant independent variables were chosen. The analysis method of the distress prediction model was performed by logit analysis and multiple discriminant analysis. Results: The difference between the average value of fourteen financial ratios of forty-six food service franchise industry was tested through t-test in order to extract variables that are classified as top-leveled and failure food service franchise industry among the financial ratios. As a result of the univariate test appears that the variables which differentiate the top-leveled food service franchise industry to failure food service industry are income to stockholders' equity, operating income to sales, current ratio, net income to assets, cash flows from operating activities, growth rate of operating income, and total assets turnover. The statistical significances of the seven financial ratio independent variables were also confirmed by logit analysis and discriminant analysis. Conclusions: The analysis results of the prediction accuracy of each distress prediction model in this study showed that the forecast accuracy of the prediction model by the discriminant analysis method was 84.8% and 89.1% by the logit analysis method, indicating that the logit analysis method has higher distress predictability than the discriminant analysis method. Comparing the previous distress prediction capability, which ranges from 75% to 85% by discriminant analysis and logit analysis, this study's prediction capacity, which is 84.8% in the discriminant analysis, and 89.1% in logit analysis, is found to belong to the range of previous study's prediction capacity range and is considered high number.
In recent decades, analyzing the activities of human brain achieved some accomplishments by using the functional Magnetic Resonance Imaging (fMRI) technique. fMRI data provide a sequence of three-dimensional images related to human brain's activity which can be used to detect instantaneous cognitive states by applying machine learning methods. In this paper, we propose a new approach for distinguishing human's cognitive states such as "observing a picture" versus "reading a sentence" and "reading an affirmative sentence" versus "reading a negative sentence". Since fMRI data are high dimensional (about 100,000 features in each sample), extremely sparse and noisy, feature selection is a very important step for increasing classification accuracy and reducing processing time. We used the Fisher Discriminant Ratio to select the most powerful discriminative features from some Regions of Interest (ROIs). The experimental results showed that our approach achieved the best performance compared to other feature extraction methods with the average accuracy approximately 95.83% for the first study and 99.5% for the second study.
Vu, Tien Duong;Yang, Hyung-Jeong;Do, Luu Ngoc;Thieu, Thao Nguyen
스마트미디어저널
/
제5권1호
/
pp.30-37
/
2016
In recent decades, the study of human brain function has dramatically increased thanks to the advent of Functional Magnetic Resonance Imaging. This is a powerful tool which provides a deep view of the activities of the brain. From fMRI data, the neuroscientists analyze which parts of the brain have responsibility for a particular action and finding the common pattern representing each state involved in these tasks. This is one of the most challenges in neuroscience area because of noisy, sparsity of data as well as the differences of anatomical brain structure of each person. In this paper, we propose the use of appropriate discriminant methods, such as Fisher Discriminant Ratio and hypothesis testing, together with strong boosting ability of Adaboost classifier. We prove that discriminant methods are effective in classifying cognitive states. The experiment results show significant better accuracy than previous works. We also show that it is possible to train a successful classifier without prior anatomical knowledge and use only a small number of features.
본 연구는 서울지역 특1급 호텔을 대상으로 2015년도 재무비율을 변수로 활용하여 표준재무비율을 산출하며, 다변량 판별분석에 의한 부실예측모형 개발 및 부실예측력 평가에 목적이 있다. 서울소재 19개 특1급 호텔의 14개 재무비율을 분석대상으로 선정하여 실증분석을 실시하였으며 분석결과는 다음과 같다. 첫째, 분석결과 우수기업과 부실기업을 판별하는 7개 재무비율은 유동비율, 차입금의존도, 영업이익대비 이자보상비율, 매출액영업이익율, 자기자본순이익율, 영업현금흐름비율, 총자산회전율로 나타났다. 둘째, 7개 재무비율을 활용하여 우수기업과 부실기업을 판별하는 판별함수를 다변량판별분석에 의해 추정하였으며, 추정된 판별함수를 실제 소속집단과 예측집단으로 분류가 가능한가의 예측력 검정 결과, 예측 판별력의 정확도는 87.9%로 분석되었다. 셋째, 추정된 판별함수의 예측 판별력의 정확도 검증결과 판별분석에 의한 부실예측모형의 예측력은 78.95%로 분석되었다. 이러한 분석결과, 호텔 경영진은 호텔기업의 부실기업집단을 판별하는 7개 재무비율을 중점적으로 관리해야 함을 시사하고 있다. 또한 호텔기업이 타 산업과는 뚜렷한 재무구조의 차이와 부실예측 지표가 상이하며, 이에 호텔기업 대상의 신용평가시스템 구축 시 호텔기업의 재무적 특성을 반영한 시스템 구축이 필요함을 시사하고 있다.
The study analyzed the cash flow and external funding in focusing on the relationship of the two factors in Korean hospitals and some changes in the relationship. The results analyzing this study were summarized as follows: First, the discriminant function of new external funds was generally the ratio of cash flow from operating activities to sales, the ratio of cash flow from investment activities to sales, the ratio of cash flow from financing activities to sales in order. The prediction rate of total discriminant function was more than 92%. Second, in case of Korean hospitals, it was known that the ratio of cash flow from operating activities to sales, particularly the net income to sales was the biggest influencing factor on the decision to external funding.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.