본 논문은 이미지 상황분석을 기반으로 하여 객체 검출 및 추적 방법을 제안한다. 제안하는 방법은 배경이 복잡한 형태이거나 배경이 동적으로 움직일 때에도 일관성 있는 결과를 얻을 수 있다. 입력 영상의 상황분석은 K-means와 RBF의 하이브리드 네트워크를 이용하여 수행되어진다. 제안된 객체 검출은 일정하지 않은 객체 이미지 때문에 생기는 영향을 감소시키기 위해 상황 기반 적응적 베이지안 네트워크를 이용한다. 본 논문에서는 학습 속도를 높이기 위해 2D Haar 웨이블릿 변형을 이용한 특징 벡터 생성기와 베이지안 판별식 방법을 이용하여 학습 시간이 적게 걸리며 학습 데이터의 변화에 일정한 성능을 갖는 방법론을 제안하였다. 제안하는 방법을 개발하여 실환경에 적용한 결과 검출하고자 하는 물체가 예측 영역을 넘나들거나 다른 불확실한 변화에도 안정적으로 반응함을 알 수 있었다. 실험 결과는 기존의 방법들에서 사용되었던 다양한 데이터 집합에 적용하였을 때 우수한 성능을 보여준다.
본 논문에서는 호텔경영을 위한 인공신경망 기반의 부도예측 모형을 개발한다. 부도예측 모형은 호텔에서 관리하는 사업장의 사업성과 이터를 바탕으로 부도 가능성을 평가하여 호텔 전체사업의 부도를 예측하는 특징을 가진다. 부도예측을 위한 전통적인 통계기법은 다변량 판별분석이나 로짓분석 등이 있는데, 본연구는 이들보다 우수한 예측정확성을 갖는 인공신경망 기법을 이용해서 연구를 진행하였다. 이를 위해 우선 우수기업 100개와 도산기업 100개를 선정하여 전체 실험데이터를 구성하고, 뉴로쉘이라는 인공신경망 도구를 이용하여 부도예측모형을 구성하였다. 본 모형 설계와 실험은 서비스드 레지던스 호텔에서 관리하는 각 브랜치의 부도예측과 재무건전성을 판단하기에 효율성이 높아 호텔 경영의 의사결정에 많은 도움이 될 것이다.
감성은 인간의 삶과 밀접한 관련을 가지고 있으며 이는 집중력, 학습능력 등 많은 부분에 영향을 주어 다양한 행동 패턴을 가지게 한다. 따라서 본 논문의 목적은 부정감성을 구분하기 위하여 생체신호를 기반으로 주요한 특징들을 추출하는 것이다. 이를 위해 본 논문에서는 심전도, 뇌파, 피부 온도와 피부전도도를 기반으로 생체신호를 측정한 후, 선형분류기와 유전 알고리즘의 조합으로 정확하고 신속한 알고리즘 개발하고, 주요 특징을 추출하였다. 그 결과, 알고리즘은 최대 96.4%의 정확도를 가짐을 확인할 수 있었고, 추출된 파라미터는 심박변이도의 Mean, RMSSD, NN50과 뇌파의 전두엽 영역에서의 ${\sigma}$파와 ${\alpha}$파의 주파수 파워, 두정엽 영역에서 ${\alpha}$파, ${\beta}$파, ${\gamma}$파와 의 주파수 파워, 그리고 피부온도의 평균과 표준편차 값이었다. 이에 따라 각 각의 생체신호를 기반으로 한 추출 된 특징들은 부정감성의 분류에 있어 중요한 역할을 함을 확인할 수 있었다.
본 논문은 차세대 지능형 기술 분야중 하나인 유비쿼터스 컴퓨팅 환경 기반에서의 얼굴인식을 제안한 것으로, 모바일 장치 중 하나인 핸드폰 카메라를 이용하여 얼굴 영상을 취득하고, 이를 이용하여 얼굴의 특징을 추출하고 인식하는 과정을 통해 모바일 보안을 생각하고자 한다. 얼굴인식을 위해 제안하는 방법은 PCA와 Fuzzy-LDA를 사용하였으며, 모바일 환경에서 데이터의 량을 줄이기 위해 다해상도 분석을 기반으로 하는 이산 웨이블렛을 사용하였다. 또한 획득된 특징데이터의 연결성을 확인하여 인식률을 얻기 위해 유클리디언 거리 측정 법을 사용하였다. 마지막으로 본 논문에서 제안한 방법의 유용성을 알아보기 위해 핸드폰 카메라를 이용해 실험한 결과 일반 카메라에서 획득한 영상에 비해 모바일 장치로부터 획득한 영상이 저해상도를 갖음에도 불구하고 높은 성능을 갖음을 확인할 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권12호
/
pp.6069-6091
/
2017
Augmented Reality (AR) overlays virtual information on real world data, such as displaying useful information on videos/images of a scene. This paper presents an Enhanced AR (EAR) system that displays useful statistical players' information on captured images of a sports game. We focus on the situation where the input image is degraded by strong sunlight. Proposed EAR system consists of an image enhancement technique to improve the accuracy of subsequent player and face detection. The image enhancement is followed by player and face detection, face recognition, and players' statistics display. First, an algorithm based on multi-scale retinex is proposed for image enhancement. Then, to detect players' and faces', we use adaptive boosting and Haar features for feature extraction and classification. The player face recognition algorithm uses boosted linear discriminant analysis to select features and nearest neighbor classifier for classification. The system can be adjusted to work in different types of sports where the input is an image and the desired output is display of information nearby the recognized players. Simulations are carried out on 2096 different images that contain players in diverse conditions. Proposed EAR system demonstrates the great potential of computer vision based approaches to develop AR applications.
When enjoying sports activities with friends or others, sportswear has symbolic meanings to express and expect self-concept. Sports players sometimes have trouble when they feel embarrassed by their low skills or care about other people too much. Therefore, researchers tried to find out which feature of sports players affects dependence on brand sportswear along with the effect of wearing conspicuous sportswear on wearer when sports players have a conflict based on Solomon's symbolic interactionism. We proposed that role knowledge and attention to social comparison information (ATSCI) influenced people to depend on and use brand sportswear that influences a reflexive evaluation. Finally, we suggested that a changed self-concept would exert influence commitment to sports. A quantitative study was conducted employing an online survey of 121 people by convenient sampling. In this process, Google Docs was to create the online survey and to collect responses by participants. In data processing, via SPSS 21.0 version for Windows, exploratory factor analysis, Cronbach's ${\alpha}$, ANOVA, t-test, discriminant and regression analysis were conducted to study the relationship between variables. The finding provided evidence that low role knowledge and high ATSCI create high dependence on brand sportswear and influence people to buy sportswear. When people bought and wore a brand sportswear, they evaluated themselves as professional sports players who were more committed to sports. This study confirmed that brand sportswear was useful for sport players to change self-evaluation and enjoy sports.
본 논문에서는 입력된 얼굴 영상으로부터 구한 DCT 계수에 대해 LDA를 적용하는 DCT/LDA를 이용한 얼굴 인식 방법을 제안한다. 제안된 방법은 적은 수의 DCT 계수를 이용하여 입력 영상을 저차원으로 표현함으로써 특징 공간의 차수보다 트레이닝 데이터의 수가 적은 경우 발생하는 LDA의 SSS 문제를 해결한다. DCT는 기저 벡터가 일정하며 PCA와 유사한 에너지 압축 효율을 가지기 때문에 제안된 방법은 기존의 PCA/LDA 방법보다 학습 속도는 빠르면서 실제 얼굴인식 시스템에 적용이 가능한 정도의 얼굴 인식율을 기대할 수 있다. 실험을 통해 제안된 방법이 PCA/LDA 방법과 유사한 얼굴 인식 성능을 보이면서 약 13,000배 빠르게 학습되는 것을 확인하였고, 기존의 Block-DCT/LDA 방법과 유사하거나 향상된 인식 결과를 확인하였다.
얼굴인식 등과 같은 고차원 식별문제에서는 샘플패턴의 수가 패턴의 차원보다 작아지게 된다. 이러한 상황에서 차원을 축소하기위해 선형판별분석법을 적용할 경우, 희소성(Small Sample Size: SSS)문제가 발생한다. 최근, SSS 문제를 해결하기 위하여 비유사도에 기반 한 식별법(Dissimilarity-Based Classification: DBC)을 이용하는 방법이 검토되었다. DBC에서는 특징 벡터 대신에 학습 샘플들로부터 추출한 프로토타입들과의 비유사도를 측정하여 입력 패턴을 식별하는 방법이다. 본 논문에서는 비유사도 표현단계와 DBC 학습단계에서 퓨전기법을 중복 적용하는 다단계 퓨전기법(Multi-level Fusion Strategies: MFS)으로 DBCs를 최적화시키는 방법을 제안한다. 제안 방법을 벤취마크 얼굴영상 데이터베이스를 대상으로 실험한 결과, 식별률을 향상시킬 수 있음을 확인하였다.
본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 패턴인식에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 기계적 모듈과 고장신호를 구하기 위한 데이터 획득 모듈로 구성하였다. 진단 절차를 위한 첫 번째 단계로서 전처리 과정은 획득한 전류를 단순화하고 정규화 하는 것을 수행한다. 데이터의 단순화 과정은 3상전류를 Concrodia 벡터의 크기로 변환하는 것을 적용한다. 다음으로 특징 추출 단계를 커널 주성분 분석과 선형판별분석으로 수행하며, 마지막으로, 분류기는 방사기저함수 네트워크를 사용한다. 다양한 부하에 대하여 몇몇의 전기적 고장과 기계적 고장 하에서 획득한 데이터를 이용하여 제안된 방법의 타당성을 검증한다.
본 논문에서는 얼굴을 인식하기 위한 쌍대각 2차원 LDA를 제안하였다. 기존의 Dia2DPCA와 Dia2DLDA가 대각 방향 영상들의 행 변화량과 열 변화량 사이의 상관을 제한하기 위하여 제안되어지고 있다. 그러나 이러한 방법들은 영상들의 행방향으로 동작한다. 제한 방법에 있어서 행방향의 투영 행렬은 기존 방법과 전혀 다르게 대각 방향 얼굴 영상들의 열 변화량을 고려한 클래스 간의 공분산 행렬과 클래스 내의 공분산 행렬을 이용함으로써 얻어진다. 그리고 열방향의 투영 행렬은 대각방향 얼굴 영상들의 행 변화량을 고려한 클래스 간의 공분산 행렬과 클래스 내의 공분산 행렬을 이용함으로써 얻어진다. 좌우 양측의 투영 방법은 투영 행렬들을 좌우로 곱함으로써 적용된다. 그 결과로 특징 행렬의 차원과 계산 시간이 감소된다. ORL 얼굴 데이터베이스에서 수행된 실험들은 Frobenius, Yang, AMD와 같은 3가지 거리 척도를 사용하여 2DPCA, B2DPCA, 2DLDA 등과 같은 다른 얼굴 인식 방법들보다 제안된 방법의 인식률이 높음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.