• Title/Summary/Keyword: discrete variables

Search Result 395, Processing Time 0.031 seconds

Generalized evolutionary optimum design of fiber-reinforced tire belt structure

  • Cho, J.R.;Lee, J.H.;Kim, K.W.;Lee, S.B.
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.451-466
    • /
    • 2013
  • This paper deals with the multi-objective optimization of tire reinforcement structures such as the tread belt and the carcass path. The multi-objective functions are defined in terms of the discrete-type design variables and approximated by artificial neutral network, and the sensitivity analyses of these functions are replaced with the iterative genetic evolution. The multi-objective optimization algorithm introduced in this paper is not only highly CPU-time-efficient but it can also be applicable to other multi-objective optimization problems in which the objective function, the design variables and the constraints are not continuous but discrete. Through the illustrative numerical experiments, the fiber-reinforced tire belt structure is optimally tailored. The proposed multi-objective optimization algorithm is not limited to the tire reinforcement structure, but it can be applicable to the generalized multi-objective structural optimization problems in various engineering applications.

Gait Control on Slope Way using Zero Moment Point for Robot (Zero Moment Point를 이용한 이족 보행 로봇의 경사로 걸음새 제어에 관한 연구)

  • Um, Seung-Hyun;Lim, Mee-Seub;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.530-532
    • /
    • 2006
  • In this paper, we propose stable walking algorithm using ZMP for the biped robot in the slope-way. At first, we define discrete state variables that classified stable area and unstable area by center of mass from ZMP during slope-way walking. For the stable walking gait, the discrete state controller for determining the high-level and low-level decision making are designed. The high-level decision making is composed of the discrete state variables; left foot support phase, right foot support phase, flat-way, and slope-way. Then the continuous state controller is implemented for the low-level decision making using ZMP.

  • PDF

Recursive Optimal State and Input Observer for Discrete Time-Variant Systems

  • Park, Youngjin;J.L.Stein
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.113-120
    • /
    • 1999
  • One of the important challenges facing control engineers in developing automated machineryis to be able to monitor the machines using remote sensors. Observrs are often used to reconstruct the machine variables of interest. However, conventional observers are unalbe to observe the machine variables when the machine models, upon which the observers are based, have inputs that cannot be measured. Since this is often the case, the authors previsously developed a steady-state optimal state and input observer for time-invariant systems [1], this paper extends that work to time-variant systems. A recursive observer, similar to a Kalman-Bucy filter, is developed . This optimal observer minimizes the trace of the error variance for discrete , linear , time-variant, stochastic systems with unknown inputs.

  • PDF

System Design Using Discrete Event Simulation (이산사건 시뮬레이션을 사용한 시스템의 설계)

  • 이영해
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.03a
    • /
    • pp.50-55
    • /
    • 1998
  • In this paper we use discrete simulation method to get the criteria of system evaluation required in the case of designing the complicated probabilistic event system having discrete probabilistic variables and to search the effective and reliable alternatives to satisfy the objective value of the given system through on-line, single run within the short time period. If we find the alternative we construct the algorithm which change values of decision variables and determining alternative by using the stopping algorithm which end the simulation in the steady state of system. In order to prevent the loss of data when we analyze the acquired design alternative in the steady state we provide the background of the estimation of the autoregressive model and mean and confidence interval for evaluating correctly the objective function obtained by the small amount of output data through the short time period simulation.

  • PDF

Discrete optimal sizing of truss using adaptive directional differential evolution

  • Pham, Anh H.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.275-296
    • /
    • 2016
  • This article presents an adaptive directional differential evolution (ADDE) algorithm and its application in solving discrete sizing truss optimization problems. The algorithm is featured by a new self-adaptation approach and a simple directional strategy. In the adaptation approach, the mutation operator is adjusted in accordance with the change of population diversity, which can well balance between global exploration and local exploitation as well as locate the promising solutions. The directional strategy is based on the order relation between two difference solutions chosen for mutation and can bias the search direction for increasing the possibility of finding improved solutions. In addition, a new scaling factor is introduced as a vector of uniform random variables to maintain the diversity without crossover operation. Numerical results show that the optimal solutions of ADDE are as good as or better than those from some modern metaheuristics in the literature, while ADDE often uses fewer structural analyses.

Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Space (직교배열표를 이용한 이산공간에서의 최적화 알고리즘 개발)

  • Yi, Jeong-Wook;Park, Joon-Seong;Lee, Kwon-Hee;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.408-413
    • /
    • 2001
  • The structural optimization is carried out in the continuous design space or discrete design space. Methods for discrete variables such as genetic algorithms are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete design space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions for constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.

  • PDF

Discrete Sizing Design of Truss Structure Using an Approximate Model and Post-Processing (근사모델과 후처리를 이용한 트러스 구조물의 이산 치수설계)

  • Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.27-37
    • /
    • 2020
  • Structural optimization problems with discrete design variables require more function calculations (or finite element analyses) than those in the continuous design space. In this study, a method to find an optimal solution in the discrete design of the truss structure is presented, reducing the number of function calculations. Because a continuous optimal solution is the Karush-Kuhn-Tucker point that satisfies the optimality condition, it is assumed that the discrete optimal solution is around the continuous optimum. Then, response values such as weight, displacement, and stress are predicted using approximate models-referred to as hybrid metamodels-within specified design ranges. The discrete design method using the hybrid metamodels is used as a post-process of the continuous optimization process. Standard truss design problems of 10-bar, 25-bar, 15-bar, and 52-bar are solved to show the usefulness of this method. The results are compared with those of existing methods.

A Study on Discrete-Continuous Modeling Methodology for Supply Chain Simulation (공급사슬시뮬레이션을 위한 이산-연속 모델링 방법에 관한 연구)

  • 김서진;이영해
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.142-149
    • /
    • 2000
  • Most of supply chain simulation models have been developed on the basis of discrete-event simulation. Since supply chain systems are neither completely discrete nor continuous, the need of constructing a model with aspects of both discrete-event simulation and continuous is provoked, resulting in a combined discrete-continuous simulation. Continuous simulation concerns the modeling over time of a system by a representation in which the state variables change continuously with respect to time. In this paper, an architecture of combined modeling for supply chain simulation is proposed, which presents the equation of continuous part in supply chain and how these equations are used supply chain simulation models. A simple supply chain model is demonstrated the possibility and the capability of this approach.

  • PDF

Modelling and controller design for hybrid system (하이브리드 시스템을 위한 모델 및 제어기 설계)

  • 박홍성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.348-352
    • /
    • 1993
  • A hybrid system contains both continuous variables and discrete event components. This paper presents the new control architecture for hybrid systems, which consists of a conventional controller for the continuous-time variable of the system, a supervisor for discrete event components of the system, and an interface for link between the controller and the plant. The presented controller is suitable for the system operating at the different operating conditions or for system being changing the plant model by enabling and disabling discrete events. This paper shows that the presented controller is better than the conventional controller.

  • PDF

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.