• Title/Summary/Keyword: discrete sliding-mode control

Search Result 63, Processing Time 0.039 seconds

Modeling and Motion Control of Piezoelectric Actuator for the Inchworm : Part 2. Motion Control of Inchworm Using Sliding Mode Method (이송자벌레를 위한 압전소자의 모델링 및 운동제어 : 2. 슬라이딩 모드법에 의한 이송자벌레의 운동제어)

  • Kim, Young-Shik;Park, Euncheol;Kim, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.878-884
    • /
    • 2005
  • This paper presents an algorithm for the precision motion control based on the dynamic characteristics of piezoelectric actuators in the inchworm. The dynamic characteristics are identified by the frequency domain modeling technique using the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. The Sliding mode controller and the Kalman filter are designed for motion control of the inch-worm.

Observer-based Robust Controller Design for HDD Actuator (HDD 액츄에이터를 위한 관측기 기반하의 견실 제어기 설계)

  • Shin, Dong-Kun;Byun, Ji-Young;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.26-28
    • /
    • 2004
  • The sliding mode control law provides a robust solution for general control problems. Most real systems which use a portable hard disk drive have to overcome disturbances and model uncertainties for proper operation. The chattering effect caused from unexpected oscillation can make the system be unstable. Therefore, we propose a robust control algorithm for the nonlinear second order systems with model uncertainties and disturbances. The proposed algorithm is designed following a sliding mode and observer based control. Thus the proposed algorithm has more expanded bounded region of control. Simulation results show the robustness of the proposed controller.

  • PDF

Switched discrete sliding mode control for ZCS series rosonant AC to DC converter (영전류 스위칭 방식의 직렬 공진형 AC/DC 컨버터를 위한 전환모드 이산 슬라이딩 제어)

  • 문건우;이정훈;이대식;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1219-1226
    • /
    • 1993
  • A buck-boost zero current switched(ZCS) series resonant AC to DC converter for the DC output voltage regulation together with high power factor is proposed. The proposed single phase AC to DC converter enables a zero current switching operation of all the power devices allowing the circuit to operate at high swtiching frequencies and high power levels. A dynamic model for this Ac to DC converter is developed and an analysis for the internal operational characteristics is explored. Based on this analysis, a switched discrete sliding mode control(SDSMC) technique is investigated and its advantages over the other types of current control techniques are discussed. With the proposed control technique, the unity power factor without a current overshoot and a wide range of output voltage can be obtained.

  • PDF

Adaptive Sliding Mode Control of Nonlinear Systems Using Neural Network and Disturbance Estimation Technique (신경망과 외란 추정 기법을 이용한 비선형 시스템의 적응 슬라이딩 모드 제어)

  • Lee, Jae-Young;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1759-1760
    • /
    • 2008
  • This paper proposes a neural network(NN)-based adaptive sliding mode controller for discrete-time nonlinear systems. By using disturbance estimation technique, a sliding mode controller is designed, which forces the sliding variable to be zero. Then, NN compensator with hidden-layer-to-output-layer weight update rule is combined with sliding mode controller in order to reduce the error of the estimates of both disturbances and nonlinear functions. The whole closed loop system rejects disturbances excellently and is proved to be ultimately uniformly bounded(UUB) provided that certain conditions for design parameters are satisfied.

  • PDF

Design of a Discrete Variable Structure Tracking Controller with Adaptive Feedforward Gains (적응 순방향 이득을 갖는 이산가변 구조추종 제어기의 설계)

  • 이성준;이강웅;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.262-268
    • /
    • 1988
  • In this paper conditions are derived, which ensure the existence of a quasi-sliding mode on the control switching hyperplane in discrete variable structure control systems and also remove the reaching phase problem observed in continuous-time variable structure systems. In addition, a discrete variable structure tracking controller which has adaptive properties is devised based on these results. This controller has useful properties, such as small sensitivity to the variation of plant parameters and to disturbances and its performing speed is fast compared to that of other adaptive controller.

  • PDF

The Novel Sliding Mode Controller for Discrete-time System with Multi-Input (다중입력 이산치계통에 대한 새로운 슬라이딩 모드 제어기의 설계)

  • Park, Seung-Kyu;Jin, Mi-Jung;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.906-908
    • /
    • 1999
  • In this paper, new sliding mode surfaces are proposed by defining novel virtual states. These sliding surfaces have nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have m-th higher order than those of the original system where m is the number of inputs. The reaching phase is removed by setting the initial virtual states which makes the initial switching functions equal to zero.

  • PDF

The Control of Z-Source Inverter for using DC Renewable Energy (직류 대체에너지 활용을 위한 Z-원 인버터 제어)

  • Park, Young-San;Bae, Cherl-O;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.169-172
    • /
    • 2007
  • This paper presents circuit models and control algorithms of distributed generation system(DGS) which consists of Z-type converter and PWM inverter. Z-type converter which employs both the L and C passive components and shoot-through zero vectors instead qf the conventional DC/DC converter in order to step up DC-link voltage. Discrete time sliding mode control with the asymptotic observer is used for current control. This system am be used for power conversion of DC renewable energy.

  • PDF

A Backstepping Design with Sliding Mode Control for Uncertain Discrete System

  • Park, Seung-Kyu;Kim, Min-Chan;Kim, Tae-Won;Ahn, Ho-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.63.6-63
    • /
    • 2002
  • The technique of backstepping have can avoid cancellations of useful nonlinearities. It is widely used in nonlinear adaptive control. But it is difficult to use this technique for uncertain nonlinear systems. Sliding mode control has robustness and application with feedback linearization. This paper shows that the robustness can be used for back stopping technique to solve the uncertainty problem and to improve the scalar design problem using Control Lyapunov function which is the motivation of back stepping technique with recursive design for high-order systems. In the respect of SMC, the result of this paper does not need to satisfy the matching condition.

  • PDF

Analysis and a Compensation Method for Torque Ripple caused by Position Error in Switched Reluctance Motor Position Sensorless Control (스위치드 릴럭턴스 전동기의 위치 센서리스 제어시 위치오차에 의해 발생하는 토크리플 해석과 그 보상 방법)

  • Oh, Ju-Hwan;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.806-807
    • /
    • 2011
  • This paper presents a new sensorless controller used with both the classical sliding mode observer(SMO) and the rate of current change in order to a reduced torque ripple for switched reluctance motor (SRM) sensorless drives. The new sensorless scheme consists of a sliding mode observer (SMO)-based position sensorless approach for high speeds along with a low-resolution discrete the rate of current change for low speeds and standstill. The new position estimation resets between the SMO and the low-resolution of current change according to the speed sign and the position error difference between the SMO and the low-resolution rate of current change. The simulation results show the robustness of this new high performance sensorless control approach with the hybrid sensorless control topology.

  • PDF

Fuzzy sliding mode controller design for improving the learning rate (퍼지 슬라이딩 모드의 속도 향상을 위한 제어기 설계)

  • Hwang, Eun-Ju;Cho, Young-Wan;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.747-752
    • /
    • 2006
  • In this paper, the adaptive fuzzy sliding mode controller with two systems is designed. The existing sliding mode controller used to $approximation{\^{u}}(t)$ with discrete sgn function and sat function for keeping the state trajectories on the sliding surface[1]. The proposed controller decrease the disturbance for uncertain control gain and This paper is concerned with an Adaptive Fuzzy Sliding Mode Control(AFSMC) that the fuzzy systems ate used to approximate the unknown functions of nonlinear system. In the adaptive fuzzy system, we adopt the adaptive law to approximate the dynamics of the nonlinear plant and to adjust the parameters of AFSMC. The stability of the suggested control system is proved via Lyapunov stability theorem, and convergence and robustness properties ate demonstrated. Futhermore, fuzzy tuning improve tracking abilities by changing some sliding conditions. In the traditional sliding mode control, ${\eta}$ is a positive constant. The increase of ${\eta}$ has led to a significant decrease in the rise time. However, this has resulted in higher overshoot. Therefore the proposed ${\eta}$ tuning AFSMC improve the performances, so that the controller can track the trajectories faster and more exactly than ordinary controller. The simulation results demonstrate that the performance is improved and the system also exhibits stability.