• Title/Summary/Keyword: discrete optimal design

Search Result 212, Processing Time 0.034 seconds

A DESIGN OF QUASI TIME-OPTIMAL FUZZY CONTROL SYSTEMS

  • Nikolai V. Rostov;Seog Chae;Oh, Young-Seok;Keum, Kyo-Un
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.473-480
    • /
    • 2002
  • The problems of quasi time-optimal digital control are discussed. A new design methodology of quasi time-optimal fuzzy controllers based on approximation of prototype discrete controller is suggested. Four kinds of practicable structures for fuzzy controllers are considered. Examples of computer design of quasi time-optimal fuzzy control systems are given.

Design of control systems by a linear fractional transformation (선형분수변환을 이용한 제어계설계)

  • ;古田 勝久
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.78-88
    • /
    • 1989
  • The fundamental objective of this paper has been to develop a means for incoporating the concept of the linear fractional transformation more generally and easily into multivariable feedback design procedure. When we design a continuous system, generally, we are constrained by design methods which arise specifically for the system. Also, in the design of descrete systems, it is the same concept. But the approach developed in this paper is very flexible in the view that in spite of being the continuous or discrete, the design can be done using a well known design method in both cases. That is, when we design a contnuous system or discrete system, the design can be done by a standard design method of continuous systmes or discrete ones, depending on the choice of the linear fractional transformation. Therefore, it is noted that this concept has broken the unflexibility of the conventional design rules for multivariable control system. In essence, the concept shows that if a given system is controllable, some desirable design, for examples, pole assignment within prespecified region, optimal controllers with poles within prespecified region etc., could be done easily by transforming a desirable region into a standard region, such as the complex left-half plane or the unit disk, by the chosen linear fractional transformation, and then by designing the transformed system using the well known standard results.

  • PDF

Automatic detection of the optimal ejecting direction based on a discrete Gauss map

  • Inui, Masatomo;Kamei, Hidekazu;Umezu, Nobuyuki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, the authors propose a system for assisting mold designers of plastic parts. With a CAD model of a part, the system automatically determines the optimal ejecting direction of the part with minimum undercuts. Since plastic parts are generally very thin, many rib features are placed on the inner side of the part to give sufficient structural strength. Our system extracts the rib features from the CAD model of the part, and determines the possible ejecting directions based on the geometric properties of the features. The system then selects the optimal direction with minimum undercuts. Possible ejecting directions are represented as discrete points on a Gauss map. Our new point distribution method for the Gauss map is based on the concept of the architectural geodesic dome. A hierarchical structure is also introduced in the point distribution, with a higher level "rough" Gauss map with rather sparse point distribution and another lower level "fine" Gauss map with much denser point distribution. A system is implemented and computational experiments are performed. Our system requires less than 10 seconds to determine the optimal ejecting direction of a CAD model with more than 1 million polygons.

Discrete Optimal Design of Truss Structures Using Genetic Algorithm (유전알고리즘을 이용한 트러스 구조물의 이산최적설계)

  • 황선일;조홍동;한상훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.97-106
    • /
    • 2001
  • 본 연구에서는 트러스 구조물의 이산최적설계를 위해 유전알고리즘(GA)을 적용하였다. 확률론적인 절차를 통해 설계에 필요한 초기 집단을 생성시킨 후, 설계를 개선시키기 위해서 자연선택 및 적자생존의 원리를 적용하였다. 다하중조건 하에서 트러스 구조물의 중량 최소화를 위해 응력 및 변위 제약을 고려하였다. 먼저, 이미 잘 알려진 트러스 구조물에 대해서 GA를 이용하여 얻은 최적해와 기존 문헌들에서 제시하고 있는 값들을 비교함으로써 GA의 신뢰성 및 적용성을 검증하였고, 이러한 신뢰성 검증을 바탕으로 사용성 있는 트러스 구조물의 이산최적설계를 위해 현재 생산중인 강재제원표로부터 부재가 선택되도록 하였다. 강재의 단면으로는 L형강을 사용하였으며, L형강의 강종은 9개의 강종들 (SS 400, SWS 400, SMA 41, SWS 490Y, SWS 520, SMA 50, SWS 570, SMA 58) 중에서 설계자에 의해 자유롭게 선택되도록 하였다.

  • PDF

Optimal Control for Discrete-Time Takagi-Sugeno Fuzzy Systems Based on Relaxed Non-Quadratic Stabilization Conditions (완화된 Non-Quadratic 안정화 조건을 기반으로 한 이산 시간 Takagi-Sugeno 퍼지 시스템의 최적 제어)

  • Lee, Dong-Hwan;Park, Jin-Bae;Yang, Han-Jin;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1724_1725
    • /
    • 2009
  • In this paper, new approaches to optimal controller design for a class of discrete-time Takagi-Sugeno (T-S) fuzzy systems are proposed based on a relaxed approach, in which non-quadratic Lyapunov function and non-parallel distributed compensation (PDC) control law are used. New relaxed conditions and linear matrix inequality (LMI) based design methods are proposed that allow outperforming previous results found in the literature. Finally, an example is given to demonstrate the efficiency of the proposed approaches.

  • PDF

Discrete Optimum Design of Ship Structures by Genetic Algorithm (유전적 알고리즘에 의한 선체 구조물의 이산적 최적설계)

  • Y.S. Yang;G.H. Kim;W.S. Ruy
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.147-156
    • /
    • 1994
  • Though optimization method had been used for long time for the optimal design of ship structure, design variables in the most cases were assumed to be continuous real values or it was not easy to solve the mixed integer optimum design problems using the conventional optimization methods. Thus, it was often tried to use various initial starting points to locate the best optimum paint and to use special method such as branch and bound method to handle the discrete design variables in the optimization problems. Sometimes it had succeed, but the essential problems for dealing with the local optimum and discrete design variables was left unsolved. Hence, in this paper, Genetic Algorithms adopting the biological evolution process is applied to the ship structural design problem where the integer values for the number of stiffen design variables or the discrete values for the plate thickness variables would be more preferable in order to find out their effects on the final optimum design. Through the numerical result comparisons, it was found that Genetic Algorithm could always yield the global optimum for the discrete and mixed integer structural optimization problem cases even though it takes more time than other methods.

  • PDF

A Motion Control of a Two Degree of Freedom Inverted Pendulum with Passive Joint using Discrete-time Sliding Observer Based VSS Controller (슬라이딩 관측기를 갖는 가변구조제어기에 의한 도립진자의 운동제어)

  • Suh, Yong-Seok;You, Wan-Sik;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.468-471
    • /
    • 1994
  • This paper presents the digital implementation of an optimal and robust VSS controller with sliding observer. Firstly, a discrete-time VSS control law which enables the system state to move into a sliding sector where the closed-loop system is stable is designed. Then optimal control theory is used to design an optimal sliding sector. Secondly, a sliding observer which provide robust state estimation against model-plant mismatches due to parameter uncertainties is designed for the sampled-data multivariable systems. Finally, modified sliding observer which effectively reduce chattering of state variables in state estimation was proposed. The proposed scheme was applied 10 a two degree of freedom inverted pendulum with passive joint to verify robust motion control. Computer simulation results confirm the viability of the proposed observer-based controller.

  • PDF

Optimization of discrete event system in a temporal logic framework (시간논리구조에서 이산사건시스템의 최적화)

  • 황형수;오성권;정용만
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.812-815
    • /
    • 1996
  • In this paper, we consider the optimal control problem based on Discrete Event Dynamic Systems(DEDS) in the Temporal Logic framework(TLF) which have studied for a convenient modeling technique. The TLF is enhanced with objective functions(event cost indices) and a measurement space is also defined. Our research goal is the design of the optimal controller for DEDSs. This procedure could be guided by the heuristic search methods. For the heuristic search, we suggested the Stochastic Ruler algorithm, instead of the A algorithm with difficulties as following; the uniqueness of solutions, the computational complexity and how to select a heuristic function. This SR algorithm is used for solving the optimal problem. An example is shown to illustrate our results.

  • PDF

Stacking Sequence Optimization of Composite Laminates for Railways Using Expert System (철도분야 응용을 위한 전문가 시스템을 이용한 복합적층판의 적층순서 최적설계)

  • Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.411-418
    • /
    • 2005
  • This paper expounds the development of a user-friendly expert system for the optimal stacking sequence design of composite laminates subjected to the various rules constraints. The expert system was realized in the graphic-based design environment. Therefore, users can access and use the system easily. The optimal stacking sequence is obtained by means of integration of a genetic algorithm, finite element analysis. These systems were integrated with the rules of design heuristics under an expert system shell. The optimal stacking sequence combination for the application of interest is drawn from the discrete ply angles and design rules stored in the knowledge base of the expert system. For the integration and management of softwares, a graphic-based design environment that provides multi-tasking and graphic user interface capability is built.

Manufacturing Line Optimization for Discrete Event Simulation and Genetic Algorithm (이산사건 시뮬레이션과 유전자 알고리즘을 이용한 제조업 공장의 라인 최적화)

  • Jeong, Young-Soo;Yim, Hyun-June;Jee, Hae-Seong;Lee, Kwang-Kook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • In spite of rapidly increasing interests in digital manufacturing, there still lacks of a systematic approach in manufacturing line flow analysis via modeling and simulation; currently, the parameters for designing manufacturing line are defined by being solely based on engineers experiences. The paper proposes an application of the genetic algorithm to a discrete event line simulation finding optimal set of parameters for manufacturing line balancing problem. The proposed method has been applied to two example problems-one is a simple manufacturing model and the other for shipyard industry-in order to demonstrate its validity and usefulness.