• Title/Summary/Keyword: discrete formulation

Search Result 149, Processing Time 0.027 seconds

Co-simulation of MultiBody Dynamics and Plenteous Sphere of Contacted Particles Using NVIDIA GPGPU (NVIDIA 의 GPGPU 를 이용한 수 많은 구형 접촉 입자가 포함된 다물체 동역학 해석)

  • Park, Ji-Soo;Yoon, Joon-Shik;Choi, Jin-Hwan;Rhim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.465-474
    • /
    • 2012
  • In this study, a dynamic simulation model that considers many spherical particles and multibody dynamics (MBD) entities is developed. Plenteous spherical particles are solved using the Discrete Element Method (DEM) technique and simulated on a GPU board in a PC. A fast algorithm is used to calculate the Hertzian contact forces between many spherical particles, and NVIDIA CUDA is used to increase the calculation speed. The explicit integration method is applied to solve the many spheres. MBD entities are simulated by recursive formulation. Constraints are reduced by recursive formulation, and the implicit generalized alpha method is applied to solve the dynamic model. A new algorithm is developed to simulate the DEM and MBD models simultaneously. As a numerical example, a truck car model and gear model are developed. The results show that the proposed algorithm using a general-purpose GPU in a PC has many advantages.

Aerodynamic Shape Optimization using Discrete Adjoint Formulation based on Overset Mesh System

  • Lee, Byung-Joon;Yim, Jin-Woo;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.95-104
    • /
    • 2007
  • A new design approach of complex geometries such as wing/body configuration is arranged by using overset mesh techniques under large scale computing environment. For an in-depth study of the flow physics and highly accurate design, several special overlapped structured blocks such as collar grid, tip-cap grid, and etc. which are commonly used in refined drag prediction are adopted to consider the applicability of the present design tools to practical problems. Various pre- and post-processing techniques for overset flow analysis and sensitivity analysis are devised or implemented to resolve overset mesh techniques into the design optimization problem based on Gradient Based Optimization Method (GBOM). In the pre-processing, the convergence characteristics of the flow solver and sensitivity analysis are improved by overlap optimization method. Moreover, a new post-processing method, Spline-Boundary Intersecting Grid (S-BIG) scheme, is proposed by considering the ratio of cell area for more refined prediction of aerodynamic coefficients and efficient evaluation of their sensitivities under parallel computing environment. With respect to the sensitivity analysis, discrete adjoint formulations for overset boundary conditions are derived by a full hand-differentiation. A smooth geometric modification on the overlapped surface boundaries and evaluation of grid sensitivities can be performed by mapping from planform coordinate to the surface meshes with Hicks-Henne function. Careful design works for the drag minimization problems of a transonic wing and a wing/body configuration are performed by using the newly-developed and -applied overset mesh techniques. The results from design applications demonstrate the capability of the present design approach successfully.

L2-NORM ERROR ANALYSIS OF THE HP-VERSION WITH NUMERICAL INTEGRATION

  • Kim, Ik-Sung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.9-22
    • /
    • 2002
  • We consider the hp-version to solve non-constant coefficient elliptic equations with Dirichlet boundary conditions on a bounded, convex polygonal domain $\Omega$ in $R^{2}.$ To compute the integrals in the variational formulation of the discrete problem we need the numerical quadrature rule scheme. In this paler we consider a family $G_{p}= {I_{m}}$ of numerical quadrature rules satisfying certain properties. When the numerical quadrature rules $I_{m}{\in}G_{p}$ are used for calculating the integrals in the stiffness matrix of the variational form we will give its variational fore and derive an error estimate of ${\parallel}u-\tilde{u}^h_p{\parallel}_0,{\Omega}'$.

An Adaptive Framework for Forecasting Demand and Technological Substitution

  • Kang, Byung-Ryong;Han, Chi-Moon;Yim, Chu-Hwan
    • ETRI Journal
    • /
    • v.18 no.2
    • /
    • pp.87-106
    • /
    • 1996
  • This paper proposes a new model as a framework for forecasting demand and technological substitution, which can accommodate different patterns of technological change. This model, which we named, "Adaptive Diffusion Model", is formalized from a conceptual framework that incorporates several underlying factors determining the market demand for technological products. The formulation of this model is given in terms of a period analysis to improve its explanatory power for dynamic processes in the real world, and is described as a continuous form which approximates a discrete derivation of the model. In order to illustrate the applicability and generality of this model, time-series data of the diffusion rates for some typical products in electronics and telecommunications market have been empirically tested. The results show that the model has higher explanatory power than any other existing model for all the products tested in our study. It has been found that this model can provide a framework which is sufficiently robust in forecasting demand and innovation diffusion for various technological products.

  • PDF

Optimization of Gable Frame Using the Modified Genetic Algorithm (개선된 유전자 알고리즘을 이용한 산형 골조의 최적화)

  • Lee, Hong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.4 s.10
    • /
    • pp.59-67
    • /
    • 2003
  • Genetic algorithm is one of the best ways to solve a discrete variable optimization problem. Genetic algorithm tends to thrive in an environment in which the search space is uneven and has many hills and valleys. In this study, genetic algorithm is used for solving the design problem of gable structure. The design problem of frame structure has some special features(complicate design space, many nonlinear constrants, integer design variables, termination conditions, special information for frame members, etc.), and these features must be considered in the formulation of optimization problem and the application of genetic algorithm. So, 'FRAME operator', a new genetic operator for solving the frame optimization problem effectively, is developed and applied to the design problem of gable structure. This example shows that the new opreator has the possibility to be an effective frame design operator and genetic algorithm is suitable for the frame optimization problem.

  • PDF

Bond graph modeling approach for piezoelectric transducer design (압전 트랜스듀서 설계를 위한 bond graph 모델링)

  • 문원규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.265-271
    • /
    • 1997
  • A bond graph modeling approach which is equivalent to a finite element method is formulated in the case of the piezoelectric thickness vibrator. This formulation suggests a new definition of the generalized displacements for a continuous system as well as the piezoelectric thickness vibrator. The newly defined coordinates are illustrated to be easily interpreted physically and easily used in analysis of the system performance. Compared to the Mason equivalent circuit model, the bond graph model offers the primary advantage of physical realizability. Compared to circuit models based on standard discrete electrical elements, the main advantage of the bond graph model is a greater physical accuracy because of the use of multiport energic elements. While results are presented here for the thickness vibrator, the modeling method presented is general in scope and can be applied to arbitrary physical systems.

  • PDF

Flat Speaker Design by Optimization of Plane Actuator (평판 작동기의 최적화를 통한 평면 스피커 설계)

  • Kim Seung Jo;Hwang Joon-Seok
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.237-242
    • /
    • 1999
  • In this study, a design method using plane actuator is developed to make new speaker system, whose shape is much thinner than that of conventional loudspeaker. Piezofilm(PVDF) is used as plane actuator of flat speaker. To avoid the distortion of sound radiated from flat speaker, the frequency response of radiated sound to be flat is taken as the design objective. The electrode pattern and orientation angle of piezofilm actuator is optimized to satisfy the design objective. The formulation is based on the coupled finite element and boundary element method. Genetic algorithm is used in the optimization process, which is useful in the optimization of discrete design variables. Frequency response with optimized piezofilm actuator is made flat enough to satisfy the design objective. For the enhancement of sound power, double-layered piezofilm actuators are also considered. The sound power with double-layered actuator becomes larger than that with single-layered actuator as expected.

  • PDF

LEAST-SQUARES METHOD FOR THE BUBBLE STABILIZATION BY THE GAUSS-NEWTON METHOD

  • Kim, Seung Soo;Lee, Yong Hun;Oh, Eun Jung
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • In the discrete formulation of the bubble stabilized Legendre Galerkin methods, the system of equations includes the artificial viscosity term as the parameter. We investigate the estimation of this parameter to get the least-squares solution which minimizes the sum of the squares of errors at each node points. Some numerical results are reported.

An Isoparmetric Kiscrete Joint Element with Joint Surface Degradation (절리면 거\ulcorner각의 손상을 고려한 개별체 절리 유한요소)

  • 이연규;이정인
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.20-30
    • /
    • 1997
  • A discrete joint finite element with joint surface degradation was developed to investigate the shear behavior of rough rock joint. Isoparametric formulation was used for facilitating the implementation of the element in existing Finite Element Codes. The elasto-plastic joint deformation model with the discontinuity constitutive law proposed by Plesha was applied to the element. The reliability of the developed finite element code was successfully testified through numerical direct shear tests conducted under both constant normal stress and constant normal displacement conditions. The result of the numerical direct shear test showed that the code can capture characteristic deformation features envisaged in the direct shear test of rough rock joint.

  • PDF

Development of Application for Unit Commitment using the Database (데이터베이스를 연계한 발전기 기동정지계획 어플리케이션 개발)

  • 박지호;백영식
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.274-280
    • /
    • 2003
  • This paper presents a Case-Sort method to solve the unit commitment problem using database in electric power systems. The formulation of the unit commitment nay be described as nonlinear mixed integer programming. However, it is hard to optimize a problem with discrete and continuous variables in a large-scale system at the same time. The Case-Sort method is based on the unit[MW]generation cost considered drive hour. Then, this paper shows effectiveness and economical efficiency of the proposed algorithm.