• Title/Summary/Keyword: discrete element method (DEM)

Search Result 164, Processing Time 0.02 seconds

Multiscale analysis using a coupled discrete/finite element model

  • Rojek, Jerzy;Onate, Eugenio
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-31
    • /
    • 2008
  • The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.

Calculation of granular flow with DEM(Discrete Element Method) (DEM(Discrete Element Method)를 사용한 분체 유동해석)

  • Choi J. W.;Sah J. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.197-203
    • /
    • 1998
  • The discrete element method is a numerical model capable of describing the mechanical behaviour of assemblies of discs and spheres. The method is based on the use of an explicit numerical scheme in which the interaction of the particles is monitored contact by contact and the motion of the particles modelled particle by particle. In this paper, A two-dimensional model for computing contacts and motions of granular particles of unform, inelasticity is presented. And, code is developed. The primary aim of this paper is to approv computational result of continuum alaysis which is on processing. The end of this paper, that code is tested with several examples.

  • PDF

Analysis of Granular Flow Using DEM (DEM을 이용한 분체 유동 해석)

  • Sah, Jong-Youb;Choi, Jeung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.256-264
    • /
    • 2004
  • The granular flow has been numerically studied by using DEM(Discrete Element Method). The eve교 particle is checked if it collides neighbor particles, and the next motion of the particle is predicted. The computing time has been drastically reduced by improving the collision check against neighboring particles. The comparison of the present method with ail experiment for the vibrating floor problem shows the good accuracy. The broken tower problem has been calculated to show the good comparison with the other computational result. This DEM(Discrete Element Method) can be a useful tool for constructing the constitute equation of the continuum approach of the granular flow.

Soil Stress Analysis Using Discrete Element Method for Plate-Sinkage Tests (DEM 모델을 이용한 평판재하시험의 토양 수직응력 해석)

  • Jang, Gichan;Lee, Soojin;Lee, Kyu-Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.230-237
    • /
    • 2015
  • Soil deformation on the off-load ground is significantly affected by soil conditions, such as soil type, water content, and etc. Thus, the soil characteristics should be estimated for predicting vehicle movements on the off-load conditions. The plate-sinkage test, a widely-used experimental test for predicting the wheel-soil interaction, provides the soil characteristic parameters from the relationship between soil stress and plate sinkage. In this study, soil stress under the plate-sinkage situation is calculated by the DEM (Discrete Element Method) model. We developed a virtual soil bin with DEM to obtain the vertical reaction forces under the plate pressing the soil surface. Also parametric studies to investigate effects of DEM model parameters, such as, particle density, Young's modulus, dynamic friction, rolling friction, and adhesion, on the characteristic soil parameters were performed.

Development of 2-D DEM (Discrete Element Method) algorithm to model ballast and sleeper (2차원 개별요소법을 이용한 도상자갈 생성 알고리즘 개발)

  • 김대상;황선근
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.174-178
    • /
    • 2003
  • This paper presents the development of 2-dimensional discrete element algorithm to generate circle and line elements for the simulation of the ballast and sleeper in railway. An example of randomly distributed circle elements show a good applicability of this algorithm for the modeling of the behaviors of ballast. The output about unbalaned force, particle velocity, and total energy conservation from the code is evaluated to check if the calculation is conducted properly.

Stress transfer mechanism of ballast bed using DEM (Discrete Element Method) (DEM을 이용한 자갈도상의 응력분포에 관한 연구)

  • Kim Dae-Sang
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.7-11
    • /
    • 2006
  • Ballast is an important component of railway track structures. The granular ballast can be modelled using [mite or discrete element methods. The DE method has advantages to enable us to analyze the microstructure of granular materials and to exhibit information which cannot be assessed using FE methods. In this paper, sleeper, the ballast, and ballast mat in the high-speed railroad line are modelled using two-dimensional discrete circle and line elements. The stress transferred from the sleeper via the ballast to the subgrade is analyzed. In addition, the shape and angle of stress distribution of ballast bed is evaluated with different boundary conditions for the high-speed railroad line.

Numerical simulation of concrete abrasion induced by unbreakable ice floes

  • Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-69
    • /
    • 2019
  • This paper focuses on the numerical simulation of ice abrasion induced by unbreakable ice floe. Under the assumption that unbreakable floes behave as rigid body, the Discrete Element Method (DEM) was applied to simulate the interaction between a fixed structure and ice floes. DEM is a numerical technique which is eligible for computing the motion and effect of a large number of particles. In DEM simulation, individual ice floe was treated as single rigid element which interacts with each other following the given interaction rules. Interactions between the ice floes and structure were defined by soft contact and viscous Coulomb friction laws. To derive the details of the interactions in terms of interaction parameters, the Finite Element Method (FEM) was employed. An abrasion process between a structure and an ice floe was simulated by FEM, and the parameters in DEM such as contact stiffness, contact damping coefficient, etc. were calibrated based on the FEM result. Resultantly, contact length and contact path length, which are the most important factors in ice abrasion prediction, were calculated from both DEM and FEM and compared with each other. The results showed good correspondence between the two results, providing superior numerical efficiency of DEM.

Compaction of Aggregated Ceramic Powders, Discrete Element and Finite Element Simulations

  • Pizette, P.;Martin, C. L.;Delette, G.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.187-188
    • /
    • 2006
  • In contrast with the Finite Element Method, the Discrete Element Method (DEM) takes explicitly into account the particulate nature of powders. DEM exhibits some drawbacks and many advantages. Simulations can be computationally expensive and they are only able to represent a volume element. However, these simulations have the great advantage of providing a wealth of information at the microstructural level. Here we demonstrate that the method is well suited for modelling, in coordination with FEM, the compaction of ceramic $UO_2$ particles that have been aggregated. Aggregates of individual ceramic crystallites that are strongly bonded together are represented by porous spheres.

  • PDF

Discrete element modeling of masonry structures: Validation and application

  • Pulatsu, Bora;Bretas, Eduardo M.;Lourenco, Paulo B.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.563-582
    • /
    • 2016
  • The failure mechanism and maximum collapse load of masonry structures may change significantly under static and dynamic excitations depending on their internal arrangement and material properties. Hence, it is important to understand correctly the nonlinear behavior of masonry structures in order to adequately assess their safety and propose efficient strengthening measures, especially for historical constructions. The discrete element method (DEM) can play an important role in these studies. This paper discusses possible collapse mechanisms and provides a set of parametric analyses by considering the influence of material properties and cross section morphologies on the out of plane strength of masonry walls. Detailed modeling of masonry structures may affect their mechanical strength and displacement capacity. In particular, the structural behavior of stacked and rubble masonry walls, portal frames, simple combinations of masonry piers and arches, and a real structure is discussed using DEM. It is further demonstrated that this structural analysis tool allows obtaining excellent results in the description of the nonlinear behavior of masonry structures.

Application of Laboratory Pressurized Vane Shear Test and Discrete Element Method for Determination of Foam-conditioned Soil Properties (폼제에 의해 개선된 흙의 물성 도출을 위한 실내 가압 베인 전단시험 및 개별요소법의 적용)

  • Kang, Tae-Ho;Lee, Hyobum;Choi, Hangseok;Choi, Soon-Wook;Chang, Soo-Ho;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • In earth pressure balance (EPB) shield TBM tunnelling, the application of soil conditioning which improves properties of the excavated muck by additives injection, is generally used for enhancing the performance of TBM. Therefore it is important to apply the soil conditioning in the numerical model which simulates excavation performance of TBM equipment, but related studies on a method that simulates soil conditioning are insufficient to date. Accordingly, in this study, an laboratory pressurized vane test apparatus was devised to evaluate the characteristics of conditioned soil. Using the apparatus, the vane shear tests were performed on foam-conditioned soil with different shear rates, and the test was numerically simulated with discrete element method (DEM). Finally, the contact properties of particles in DEM were determined by comparing the results of test and analysis, and it indicates that the applicability of pressurized vane test and DEM model for reproducing soil conditioning in TBM excavation model with DEM.