• 제목/요약/키워드: discrete element method

검색결과 499건 처리시간 0.029초

PFC2D에서의 발파에 의한 파괴 메커니즘의 수치적 모델링 (Numerical Simulation of Fracture Mechanism by Blasting using PFC2D)

  • 정용훈;이정인;전석원
    • 터널과지하공간
    • /
    • 제16권6호
    • /
    • pp.476-485
    • /
    • 2006
  • 발파에 의한 암반의 손상이나 파쇄는 폭약의 폭굉 과정에서 발생하는 충격파와 가스팽창의 영향에 의해 야기된다. 발파에 의한 파괴 메커니즘을 완전히 이해하기 위해서는 두 메커니즘을 같이 연구해야한다. 본 연구에서는 개별 요소법에 기초한 수치해석 프로그램인 PFC2D를 이용하여 발파공 벽면에 작용하는 폭굉압과 가스압을 동시에 모델링 할 수 있고 이에 따른 암반 내 균열 발생을 확인할 수 있는 알고리즘을 개발하였다. 또한 시멘트-모르타르 블록에서의 모형 발파시험을 수치해석을 수행함으로써, 개발된 알고리즘을 검증하였다.

노후 매립관로로 인한 지하 공동발생 메카니즘 고찰 (Understanding of Subsurface Cavity Mechanism due to the Deterioration of Buried Pipe)

  • 이대영;조남각
    • 한국지반공학회논문집
    • /
    • 제32권12호
    • /
    • pp.33-43
    • /
    • 2016
  • 노후관로로 인한 지반내 공동형성과 지반이완 메카니즘을 분석하기 위해 현장시험을 수행하였으며 수치해석을 수행하여 현장시험과 비교하였다. 현장시험은 지반내 인위적인 공동을 만들기 위해 얼음을 이용하였으며, 시간경과에 따른 얼음의 융해로 인해 공동형성과 주변지반의 이완을 확인할 수 있었다. 다짐된 토사의 interlocking에 의한 이완 및 공동형성 거동을 고려하기 위하여개별요소법에 근거한 수치해석 프로그램인 PFC 2D를 이용하였다. PFC의 클럼프(clump) 요소를 도입하여 불규칙 형상의 입자를 모사하였으며, 이를 통해 얻은 공동형성과 지반이완 특성을 현장시험 결과와 비교함으로써 지반내 공동형성 및 거동특성을 파악하였다.

반응표면분석법을 이용한 리니어모터의 형상최적설계 (Optimal Geometric Design of Linear Motor Using Response Surface Methodology)

  • 이태원
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1262-1269
    • /
    • 2005
  • Thrust of linear motor is one of the important factor to specify motor performance. Maximum thrust can be obtained by increasing the current in conductor and is relative to the sizes of conductor and magnet. But, the current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find design results that can effectively maximize the thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and the temperature of the conductor was calculated by the thermal resistance. The diameter of copper wire among design variables has discrete value and number of turns must be integer. Considering these facts, special techinque for optimum design is presented. To reduce excessive computation time of thrust in optimization, the design variables was redefined by analysis of variance and second order regression model for thrust was determined by response surface metheodology. As a result, it is shown that the proposed method has an advantage in optimum design of linear motor.

액체연료 의 분사연소시 분사조건 이 화염 과 액적군 의 성질 에 미치는 영향 (The Effects of Spray Parameters on the Flame and Spray Characteristics for Liquid Fuel Spray Flame)

  • 김호영
    • 대한기계학회논문집
    • /
    • 제8권3호
    • /
    • pp.201-209
    • /
    • 1984
  • 본 연구는 Kim과 Chiu가 사용한 연속체 관점에서 유도된 액체-기체상의 2상유 동모델(Two Phase Flow:TPF)을 이용하여 초기 집단연소수(group combustion number)의 크기, 즉 액적들의 초기 분포상태에 따른 연소상태를 예측 분류한다. 또한 이때 예 측된 대표적인 연소상태에서 형성되는 화염의 성질을 비교 검토한다.

다양한 각도의 출구에서의 보행자 유동 시뮬레이션을 위한 설치류 실험 (Rodent Experiments for Pedestrian Flow Simulation at Exit with Various Angles)

  • 오혜진;유재희;박준영
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.30-39
    • /
    • 2016
  • There have been many cases of deaths from crushing caused by dense crowds. Numerous studies about pedestrian flow have performed various simulations, but the experimental data to prove the simulations are still not enough. In this paper, the evacuation of pedestrians for proving pedestrian flow simulation is observed. Due to the possibility of real casualties, it is difficult to experiment with humans directly. Therefore, ten C57BL/6NCrSIc mice have been used. It is assumed that C57BL/6NCrSIc mice act like humans in panic situations. Electrical Stimulus Experiments on mice are conducted for exits with various angles. ICY software is applied in this paper. As a result, the mice escape fast at a proper angle of 45 to 60 degrees.

공동을 포함하는 횡등방성 절리암반 모델의 압축 파괴거동 (Compressive Fracture Behaviors of Transversely Isotropic Jointed Rock Model with an Opening)

  • 사공명;김세철;유재호;박두희;이준석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.58-63
    • /
    • 2009
  • Biaxial compression test was conducted on a transversely isotropic synthetic jointed rock model for the understanding of the fracture behaviors of a sedimentary or metamorphic rocks with well developed bedding or foliation in uni-direction. The joint angles employed for the model are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made of early strength cement. From the biaxial compression test, initiation propagation of tensile cracks at norm to the joint angle was found. The propagated tensile cracks eventually developed rock blocks, which was dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The experiment results were validated from the simulation by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows a progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

  • PDF

Design and Analysis of a Segmental Rotor Type 12/8 Switched Reluctance Motor

  • Zhang, Hongtao;Lee, Dong-Hee;Lee, Chee-Woo;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.866-873
    • /
    • 2014
  • In this paper, a novel 12/8 segmental rotor type switched reluctance motor (SRM) is proposed for cooling fan applications. Unlike conventional structures, the rotor of the proposed structure is constructed from a series of discrete segments, and the stator is constructed from two types of stator poles: exciting and auxiliary poles. Moreover, in this structure, short flux paths are taken and no flux reversion exists in the stator. While the auxiliary poles are not wound by the windings, which only provide the flux return path. When compared with the conventional SRM, the proposed structure increases the electrical utilization of the machine and decreases the core losses, which may lead to a higher efficiency. To verify the proposed structure, the finite element method (FEM) and Matlab-Simulink are employed to get the static and dynamic characteristics of the proposed SRM. Finally, a prototype of the proposed motor was tested for characteristic comparisons.

Effect of Joint Spacing on the Earth Pressure Against the Support System in a Jointed Rock Mass

  • Son, Moorak;Adedokun, Solomon
    • 한국지반환경공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.29-37
    • /
    • 2016
  • This study examined the magnitude and distribution of earth pressure on the support system in a jointed rock mass due to the different joint spacing as well as varying the rock type and joint condition (joint shear strength and joint inclination angle). Based on a physical model test and its numerical simulation, a series of numerical parametric analyses were conducted using a discrete element method. The results showed that the magnitude and distribution of earth pressure were strongly affected by the different joint spacing as well as the rock type and joint condition. In addition, the study results were compared with Peck's earth pressure for soil ground, which indicated that the earth pressure in a jointed rock mass could be considerably different from that in soil ground. The study suggests that the joint spacing as well as the rock type and joint condition are important factors affecting the earth pressure in a jointed rock mass and they should be considered when designing a support system in a jointed rock mass.

가스 하이드레이트와 파이프라인 유동 안정성 (Hydrate Researches in the flow assurance)

  • 김용헌;양성오
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.425-428
    • /
    • 2006
  • Natural gas hydrate has been a major problem for its plugging nature in the pipeline. With the demand of deep-water production, the importance of flow assurance technology, preventing hydrate, asphaltene and wax in the pipeline becomes bigger Kinetic models combined with the flow simulator are being developed to explain the nature of hydrate plug formation in the pipeline. To simulate the hydrate plug formation, each stage including the nucleation, growth and agglomeration should be considered. The hydrate nucleation is known to be stochastic and is believed hard to be predicted. Recent publications showed hydrate growth and agglomeration can be observed rigorously using a particle size analyzer. However properties of the hydrate should be investigated to model the growth and agglomeration. The attractive force between hydrate particles, supposed to be the capillary force, was revealed to be stochastic. Alternative way to model the hydrate agglomeration is to simulate by the discrete element method. Those parameters, particle size distribution, attractive force, and growth rate are embedded into the kinetic model which is combined Into the flow simulator. When compared with the flowloop experimental data, hydrate kinetic model combined into a flow simulator showed good results. With the early results, the hydrate kinetic model is promising but needs more efforts to improve it.

  • PDF

A numerical analysis of the equivalent skeleton void ratio for silty sand

  • Dai, Bei-Bing;Yang, Jun;Gu, Xiao-Qiang;Zhang, Wei
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.19-30
    • /
    • 2019
  • Recent research on the behavior of silty sand tends to advocate the use of equivalent skeleton void ratio to characterize the density state of this type of soil. This paper presents an investigation to explore the physical meaning of the equivalent skeleton void ratio by means of DEM simulations for assemblies of coarse and fine particles under biaxial shear. The simulations reveal that the distribution pattern of fine particles in the soil skeleton plays a crucial role in the overall macroscopic response: The contractive response observed at the macro scale is mainly caused by the movement of fine particles out of the force chains whereas the dilative response is mainly associated with the migration of fine particles into the force chains. In an assembly of coarse and fine particles, neither all of the fine particles nor all of the coarse ones participate in the force chains to carry the external loads, and therefore a more reasonable definition for equivalent skeleton void ratio is put forward in which a new parameter d is introduced to take into account the fraction of coarse particles absent from the force chains.