• Title/Summary/Keyword: discharge resistance

Search Result 497, Processing Time 0.025 seconds

Development of Discharge Electrode for Machining Connector Mold applying MIM Process (MIM 공법 적용 커넥터 금형 가공용 방전 전극 개발)

  • Shin, Kwang-Ho;Jeon, Yong-Jun;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.37-40
    • /
    • 2014
  • A discharge electrode plays a role of shaving off workpiece with spark generated by current in discharge machining. Accordingly, for the discharge electrode, an electrode with excellent wear resistance is necessary. Generally, Graphite and Cu are used as the materials of the electrode, and recently Cu-W is mainly used as an electrode with excellent wear resistance. However, the form of the electrode generally used is produced mostly using cutting work, so a lot of costs incur if several similar forms are needed. Thus, this study developed a Cu-W electrode using Metal Injection Molding (MIM) process to produce similar forms with excellent productivity and a great quantity of electrodes in a similar form in discharge machining and carried out a discharge machining test. In developing an electrode applying MIM, predicting contraction of a product in a sintering process, a mold expansion ratio of 1.29486 was given, but the actual product showed a percentage of contraction 24% to 32%, which showed a difference of 3% to 5%. In addition, to verify wear resistance of the discharge electrode, abrasion loss was measured after the discharge.

  • PDF

Effects of Charge-discharge Rate on Morphology and Resistance of Surface Film on a Graphite Negative Electrode in an Ethylene Carbonate-based Solution (탄산 에틸렌계 용액 중에서 생성되는 흑연 음극 표면피막의 형상 및 저항에 미치는 충방전 속도의 영향)

  • Jeong, Soonki;Kim, Pogyom
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.179-185
    • /
    • 2013
  • The behavior of surface film formation was greatly dependent on the speed of potential cycling. In $LiClO_4$ / EC + DEC, cyclic voltammetry results showed that the peaks originated from surface film formation on graphite electrode at the high charge-discharge rate was shifted to the lower potentials as the charge-discharge rate decrease. This indicates that surface films with different morphology and thickness were formed by different charge-discharge rate. Transmission electron microscopy (TEM) results indicated that the properties such as thickness and morphology of the surface film were greatly affected by the charge-discharge rate. Electrochemical impedance spectroscopy (EIS) showed that the resistance of surface film was affected by the speed of potential cycling. In addition, the charge transfer resistance was also dependent on the charge-discharge rate indicating that the charge transfer reaction was affected by the nature of surface film. TEM and EIS results suggested that the chemical property as well as the physical property of the surface film was affected by the charge-discharge rate.

A Study of Measurement of Minimum Ignition Energy for Pine Tree Dust on Electrostatic Discharges (정전기 방전시의 소나무목분의 최소착화에너지 측정에 관한 연구)

  • 이동훈;박한석
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.74-79
    • /
    • 1998
  • To establish measuring method for minimum ignition energy of explosive powders caused by electrostatic discharge, A measuring method(Hartman) using a very small quantity of pine tree testing powder was proposed, and the influence of discharge current limiting resistance connected in series into a capacitive discharge circuit on ignition energies of explosive powders was investigated. As a result the minimum ignition energy was 42.25mJ when discharge current limiting resistance 300 $k\Omega$.

  • PDF

Conductive and Mechanical Properties Study of Ti-doped DLC (ta-C:Ti) Film on Semiconductor Probe through Taguchi Bobust Design (다구찌 강건 설계를 통한 반도체 Probe상 Ti 도핑된 DLC(ta-C:Ti) 코팅 막의 전도성 및 기계적 물성 연구)

  • Kim, Do-young;Shin, Jun-ki;Jang, Young-Jun;Kim, Jongkuk
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.274-280
    • /
    • 2022
  • There is a problem that semiconductor probe pin has a short lifespan. In order to solve this problem, Ti having excellent conductivity was doped to tetrahedral amorphous carbon (ta-C) having excellent hardness and abrasion resistance. This experiment was planned through the Taguchi robust design to determine the effect of the control factor of the ta-C:Ti coating film. The effect and contribution of control factors such as Unbalanced Magnetron Sputter(UBM) discharge current, arc discharge current, temperature, and bias voltage on ta-C:Ti characteristics were analyzed from the perspective of electrical and mechanical characteristics. The UBM discharge current was set to 4, 6, and 8 A. The main control factor of thickness and resistance is the UBM discharge current, and the thickness increased and the resistance decreased as the current increased. The decrease in resistance is due to the increase in the Ti content of the ta-C:Ti coating film. The arc discharge current was set to 60, 80, and 100 A. The main control factor of hardness and wear is the arc discharge current, and as the current rises, the hardness increases and the wear area decreases. This is due to the increased ta-C content of the ta-C:Ti coating film. Since resistance and wear are important for Probe Pin, the optimal level is set from the perspective of resistance and wear and a confirmation experiment is conducted.

Characteristics of RC circuit with Transistor in Micro-EDM (트랜지스터 부착 RC 방전회로의 마이크로 방전가공 특성)

  • 조필주;이상민;최덕기;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • In micro-EBM, it is well blown that RC circuit is suitable for discharge circuit because of its low pulse width and relatively high peak current. To increase machining speed without changing unit discharge energy, charge resistance should be decreased. But, if very low, continuous (or normal) arc discharge occurs, then increases electrode wear and reduces machining speed remarkably. In this paper, RC circuit with transistor is used to micro-EDM. Experimental results show that RC circuit with transistor can cut off continuous (or normal) arc discharge effectively if duty factor and switching period of transistor are set up optimally. Through experiments with varying charge resistance, it can be known that RC circuit with transistor has about two times faster machining speed than that of RC circuit. Especially, it has prominent rise-effect of machining speed in low unit discharge energy, so that a high-quality and high-speed micro-EDM can be realized through RC circuit with transistor.

  • PDF

Mechanical Characteristics when Wire Electrical Discharge Machining and Surface Grinding for Titanium Alloy (티타늄합금의 와이어 방전가공과 연삭가공시 기계적 특성)

  • 김종업;왕덕현;김원일;이윤경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.172-178
    • /
    • 2001
  • Titanium alloys have lightness, high strength and good corrosion resistant characteristics, and broadly used in manufacturing parts for military and aerospace industries. And these alloys also are recognized for organism materials comparatively and used as fixing ones in the human body. Nevertheless thess alloys have excellent properties such as corrosion resistance, heat resistance, and good tensile strength, it is difficult to machine by traditional methods because of high hardness and chemically activated property. So higher tool wear is expected when cutting by tools. Therefore, it is required nontraditional machining process. And the mechanical characteristics such as surface structure and shape, hardness and bending strength are studied for wire electrical discharge machined and surface ground titanium alloys for various heat-treated conditions.

  • PDF

Characteristics of RC Circuit with Transistors in Micro-EDM (트랜지스터 부착 RC 방전회로의 마이크로 방전가공 특성)

  • Cho Pil Joo;Yi Sang Min;Choi Deok Ki;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.44-51
    • /
    • 2004
  • In a micro-EDM, it is well known that an RC circuit is suitable as a discharge circuit because of its low pulse width and relatively high peak current. To increase machining speed without changing unit discharge energy, charge resistance should be decreased. But, when the resistance is very low, continuous (or normal) arc discharge occurs, electrode wear increases and machining speed is reduced remarkably. In this paper, an RC circuit with transistors is used in a micro-EDM. Experimental results show that the RC circuit with transistors can cut off a continuous (o. normal) arc discharge effectively if the duty factor and switching period of the transistor are set up optimally. Through experiments with varying charge resistances, it is shown that the RC circuit with transistors has about two times faster machining speed than that of an RC circuit.

Size Effects of the Catalyst on Characteristics of Zn/Air Batteries (MnO2입자 크기에 따른 아연공기전지의 특성연구)

  • 김지훈;엄승욱;문성인;윤문수;김주용;박정식;박정후
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1150-1154
    • /
    • 2003
  • The voltage profile during discharge of the zinc air battery has very flat pattern until reach to end of discharge voltage. But, when zinc air battery is discharged by high current, the discharge voltage and energy becomes low. Therefore, we focused on effects of catalyst size to solve this problems by increasing active sites of oxygen reduction reaction. The size of catalyst was reduced from 27 to l${\mu}{\textrm}{m}$ and we examined average discharge voltage, capacity, energy, resistance and characteristics during GSM pulse discharge of zinc air battery with change of current density. And we also measured porosity of the cathode according to the ASTM. So we have got improvement of average discharge voltage and energy when catalyst was minimized and we have got optimum size of catalyst at 5${\mu}{\textrm}{m}$.

Discharge Characteristics of Logic Gate for Discharge Logic Gate Plasma Display Panel (방전 논리게이트 플라즈마 디스플레이 패널의 논리게이트 방전특성)

  • Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.9-15
    • /
    • 2005
  • In this research the discharge characteristics of logic gate of the discharge logic gate plasma display panel with the NOT-AND logic function newly designed was analyzed. As for this discharge logic gate a logical output is induced by controlling the voltage between the electrodes using the discharge path. From the experimental result the discharge characteristics of logic gate is influenced by the interrelation of the voltages appling two vertical electrodes. To in the application possibility to large screen PDP, the discharge characteristics by the line resistance of the electrode was evaluated In result it has been inferred that the influence which the drop of voltage by the line resistance of two vertical electrodes exerts on the discharge of the logic gate is minute. Through the experiment, the optimized values of the pulse voltages and the current limitation resistances of each electrode which composed the discharge logic gate were obtained and maximum operation margin of 49[V] was obtained.

Frictional Characteristics of Wire Electric Discharge Machined STDll Surface (STD11 와이어 방전가공면의 마찰특성)

  • 김영욱;조성산
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.253-258
    • /
    • 2000
  • Frictional behavior of wire electric discharge machined surfaces of spheroidized annealed STDll steel was investigated. The surfaces were produced with a various series of finish cuts where pulse energy was reduced with increase in the number of finish cuts. Roughness and micro-hardness of the surfaces were also measured. It is observed that the increase in the number of finish cuts produces the surface exhibiting lower frictional resistance followed by higher resistance after considerable wear. Effects of finish cuts on the friction characteristics are discussed with the aid of roughness and micro-hardness of the surfaces.