• Title/Summary/Keyword: discharge and water quality

Search Result 702, Processing Time 0.033 seconds

Experimental Study on Reduction Effects of Non-Point Pollutants by Improvement of Infiltration Capacity of Soil Filter Strip (토양여과대의 침투능 향상을 통한 비점오염물질 저감 효과에 관한 실험적 연구)

  • Woo, Su-Hye;Choi, I-Song;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.264-272
    • /
    • 2007
  • Runoff of non-point pollutants has affected bad influence to water quality of river as reaching within short time. For this reason, reducing them prior to reaching aquatic systems or treating them after collection from discharge process of pollutants are desirable for efficient treatment of pollutants. This study was carried out to develop an ecotechnological method to prevent further aggravation of water quality by non-point source through vegetation filter strips. This study has placed a focus on improving infiltration capacity of soil for the optimum condition of vegetation filter strips. Therefore, we used titled soil filter strips instead of vegetation filter strips in this study. The three types of soil tilter strips were used in a bench scale experiment before applying to the field. The reduction efficiency of pollutants in soil filter strips (SS $84.5{\sim}92.5%$, BOD $67.9{\sim}80.6%$, T-N $43.4{\sim}76.6%$, T-P $40.6{\sim}87.4%$, Cu $28.3{\sim}48.1%$ Fe $92.1{\sim}97.7%$, Pb $81.4{\sim}97.3%$) was much higher than that of the controled group. And non-point pollutants reduction efficiency by soil filter strip's forms was estimated to be distinguishing in order of bio material, mixture of sand and gravel and lastly the whole gravel. In the event, the whole reduction efficiency of pollutants on the soil filter strips disclosed good results.

A Study on Evaluation of Target Region for the Agricultural Non-point Sources Management (새만금 유역 농업비점오염원 관리를 위한 우선지구 선정연구)

  • Jang, Nam-Jung;Kim, Bo-Guk;Im, Seoung-Hyun;Kim, Tae-Kyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • Measures against non-point sources pollution in Saemangeum watershed should be established to control water quality of Saemangeum lake, because non-point sources pollution discharge portions of BOD (Biological Oxygen Demand) and TP (Total Phosphorous) in the watershed were 68.4 and 61.4%, respectively. In this study, target regions for the non-point sources pollution control were selected to apply BMP (Best Management Practices) for the agricultural area of Saemanguem watershed in terms of TP that caused eutrophication at the lake. Target regions were selected by the NPSI (Non-point source index) that was calculated by the total 12 indexes at the steps of non-point source production, emission and outflow. Weights of the indexes were determined by the watershed management experts oriented AHP (Analytic Hierarchy Process) analysis. The target region was selected at the unit of Korean basic administrative district 'Dong/Li'. At the results of NPSI calculations through the GIS (Geographical Information System) tools, two sets of 5 regions were selected in the Man-kyung River and Dong-gin River. The main reason for the selected target regions was livestock activity in the district. The results of this study can be useful for implementing the reduction projects of agricultural non-point sources pollution to control water quality in Saemangeum lake.

Biogeochemical Study of Dissolved Organic and Inorganic Compounds under Oxic/Anoxic Environment in Lake Shihwa (시화호 산화-환원 환경하의 용존 유, 무기 화합물의 생지화학적 연구)

  • Park, Yong-Chul;Park, Jun-Kun;Han, Myong-Woo;Son, Seung-Kyu;Kim, Moon-Koo;Huh, Seong-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.53-68
    • /
    • 1997
  • Lake Shihwa, artificially constructed since 1988, shows a typical two-layered system depending on strong haline density stratification. Sill of the water gate at 6 m depth greatly restricts physical mixing with outer seawater and circulation in the lake, and contributes to the enhancement of anoxic environment in the deeper layer. With this enclosed physical environment, Lake Shihwa receives enormous amounts of organics, ammonia, and other pollutants from the neighboring municipal and industrial complexes through six major streams, thus developing biogeochemical differentiation of anoxic to suboxic environment in the high saline bottom water and highly eutrophicated brackish surface water. This study investigated vertical structures, biogeochemical behaviors and processes of various organic and inorganic compounds around oxic-anoxic interface. Nitrite and nitrate rapidly decreased below the pycnocline where about $1{\times}10^8$ tons of hypoxic bottom water exist. In this bottom layer, ammonium ranged from 75 to 360 ${\mu}M$ mainly resulting from deamination of dissolved organic nitrogen and ammonification of precipitated organic particles. Despite large amounts of surface water discharge and dilution by outer seawater inflow about $3{\times}10^8$ tons from April to August, 1996, bottom layer did not show any improvement of water quality and maintained highly reduced environment. The main reason seems to be imbalance between ineffectiveness of dilution due to shallow depth and large surface area, overloaded POC influx from the eutrophicated surface biological activity, and poor replenishment of oxygen in this artificial lake system. Therefore, as long as current salinity dependent two-layered system maintains with its physical limitations, any improvement of water quality cannot be foreseen in Lake Shihwa.

  • PDF

Estimation of Suspended Sediment Runoff for Landuse (토지이용에 따른 부유토사 유출 평가)

  • Kim, Joo-Hun;Oh, Deuk-Kun;Kim, Kyung-Tak
    • Journal of Wetlands Research
    • /
    • v.7 no.1
    • /
    • pp.119-128
    • /
    • 2005
  • Sediment yield and sediment transport in a basin bring about decrease of conveyance by the change of bed section, and have an influence on an aggravation of water quality and freshwater ecosystem. This study is to analyze the characteristics of outflow sediment according to land-use in Mushim-cheon flowing through forest area, farmland area and urban area. The upper stream of Mushim-cheon consists of forest area and farmland area. The suspended sediment is observed through 10 rainfall events in 5 sites. As a result of analyzing characteristics of landuse, the site of Bangse-gyo takes up 69% of Mushim-cheon, and farmland area(27.1%) and forest area(63.7%) take up 90.8% in Bangse-gyo. Accordingly, these two areas have the high possibility to occur sediment. The suspended sediment of this site shows the highest concentration. Transferring to the downstream and the urban, the concentration of suspended sediment gets decreased. The suspended sediment occurred in the upper stream of Mushim-cheon prior to Bangse-gyo has an influence on the downstream, and has a slight influence on the urban area. Also relational formula about suspended sediemtn and discharge is leaded. As a result of this formula, $R^{2}$ is 0.506 in the upper stream and is 0.656 in the downstream.

  • PDF

Estimation of Pollutant Load Delivery Ratio for Flow Duration Using L-Q Equation from the Oenam-cheon watershed in Juam Lake (유량-부하량관계식을 이용한 주암호 외남천 유역의 유황별 유달율 산정)

  • Choi, Dong-Ho;Jung, Jae-Woon;Lee, Kyoung-Sook;Choi, Yu-Jin;Yoon, Kwang-Sik;Cho, So-Hyun;Park, Ha-Na;Lim, Byung-Jin;Chang, Nam-Ik
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2012
  • The objective of this study is to provide pollutant loads delivery ratio for flow duration in Oenam-cheon watershed, which is upstream watershed of Juam Lake. To calculate the delivery ratio by flow duration, rating curves and discharge-loads curves using measured data were established, then Flow Duration Curve(FDC) and pollutant loads delivery ratio curves were constructed. The results show that the delivery ratios for $BOD_5$ for abundant flow($Q_{95}$), ordinary flow($Q_{185}$), low flow($Q_{275}$), and drought flow($Q_{355}$) were 23.9, 12.7, 7.1, and 2.9%, respectively. The delivery ratios of same flow regime for T-N were 58.4, 31.2, 17.2 and 7.1%, respectively. While, the delivery ratios T-P were 17.3, 7.5, 3.4, and 1.1% respectively. In general, delivery ratio of high flow condition showed higher value due to the influence of nonpoint source pollution. Based on the study results, generalized equations were developed for delivery ratio and discharge per unit area, which could be used for ungaged watershed with similar pollution sources.

Continuous Removal of Organic Matters of Eutrophic Lake Using Freshwater Bivalves: Inter-specific and Intra-specific Differences (CROM를 이용한 부영양 저수지의 유기물 제어: 이매패의 종 특이성에 대하여)

  • Lee, Ju-Hwan;Hwang, Soon-Jin;Park, Sen-Gu;Hwang, Su-Ok;Yu, Chun-Man;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.350-363
    • /
    • 2009
  • Inter- and intra-specific differences in removal activities, filtering rates (FR) and production of feces-and pseudo-feces (PF) between a native freshwater bivalve in Korea, Anodonta woodiana Lea and Unio douglasiae Griffith et Pidgeon, were compared using a continuous removal of organic matters (CROM) system. The CROM system comprised five steps; input of polluted water, control of water flow, mussel treatment, analysis of water quality and discharge of clean water. The study was designed to compare the removal activity of organic matters between A. woodiana and U. douglasiae, and the intra-specific differences between density and length in A. woordiana. Results clearly indicate that two kinds of mussels had obvious removal activities of seston in the eutrophic reservoir. First, if both are similar in shell length, there were no significant inter-specific differences in removal activity between A. woordiana and U. douglasiae (P>0.5), but FRs of U. douglasiae was relatively high due to low ash-fee dry weight. Second, if both are same in animal density, the smaller mussels (1$\sim$2 years old) showed a higher filtering rate and production of feces- and pseudo-feces and less release of ammonium than the larger mussels. Third, if both are same in biomass, FRs and PF of mussels were higher in the low-density tank than the high-density tank, While the Concentration of $NH_4$-N and $PO_4$-P released WRS similar to each other (P>0.5). Therefore, these results suggest that CROM system using a young bivalve A. woordiana can be applied to control the nuisance seston in eutrophic lake system, if a relevant species and density were selected. Additional pilot tests to optimize the age and density of domestic bivalves were needed for the generalization of CROM operation.

Coliform Pollution Status of Nakdong River and Tributaries (낙동강수계 본류와 유입지천의 대장균군 오염도)

  • Lee, Hae-Jin;Park, Hae-Kyung;Lee, Jae Hak;Park, A Reum;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.271-280
    • /
    • 2016
  • The aim of this study was to analyze spatial and temporal patterns of bacterial pollution levels and the relationship between bacterial pollutants and environmental parameters at the main stream and tributaries of Nakdong River. Water quality data including total coliform and fecal coliform were compiled from a total of 50 monitoring sites (30 at the main stream and 20 at the tributaries) along with rainfall and discharge data for three consecutive years from 2012 to 2014. During the study periods, the geometric mean values of total coliforms and fecal coliforms in the main stream were 74 (22~465) CFU/100 mL and 8 (3~42) CFU/100 mL, respectively. The geometric mean values of total coliforms and fecal coliforms in the tributaries were 275 (36~5,145) CFU/100 mL and 6 (1~1,352) CFU/100 mL, respectively. High concentrations of fecal coliforms were observed at Gumi (M 10), Hyeonpung (M 19), Hapcheon (M 23), and Namji (M 25) in the main stream, whereas Gamcheon (T 6), Bakcheon (T 7), Geumho-gang (T 8), and Gyeseongcheon (T 16) were identified as pollution hot spots in the tributaries. Although bacterial pollution levels showed complex behavior across monitoring sites and time, the highest coliform concentrations were routinely observed in the monsoon season between July and September of each year, indicating that the pollution levels were strongly dependent on precipitation in addition to other physiochemical parameters. Statistically significant correlations were found between fecal coliform concentrations and precipitation (r=0.403, p<0.01), followed by SS (r=0.425, p<0.01), nutrient TP (r=0.388, p<0.01), organic matter COD (r=0.322, p<0.01), and PO4-P (r=0.317, p<0.01) in the main stream in the order of correlation coefficient from high to low.

Survey of Physicochemical Methods and Economic Analysis of Domestic Wastewater Treatment Plant for Advanced Treatment of Phosphorus Removal (총인 수질기준강화를 위한 국내 하수종말처리장의 물리화학적처리 특성조사 및 경제성 분석)

  • Park, Hye-Young;Park, Sang-Min;Lee, Ki-Cheol;Kwon, Oh-Sang;Yu, Soon-Ju;Kim, Shin-Jo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.212-221
    • /
    • 2011
  • Wastewater treatment plants (WWTPs) are required to meet the reinforced discharge standards which are differentiated as 0.2, 0.3 and 0.5 mg-TP/L for the district I, II and III, respectively. Although most of WWTPs are operating advanced biological phosphorus removal system, the supplementary phosphorus treatment facility using chemical addition should be required almost at all WWTPs. Therefore, water quality data from several exemplary full-scale plants operating phosphorus treatment process were analyzed to evaluate the reliability of removal performance. Additionally, a series of jar tests were conducted to find optimal coagulants dose for phosphorus removal by chemical precipitation and to describe characteristics of the reaction and sludge production. Chemical costs and the increasing sludge volume in physicochemical phosphorus removal process were estimated based on the results of jar tests. The minimum coagulant (aluminium sulfate and poly aluminium chloride) doses to keep TP concentration below 0.5 and 0.2 mg/L were around 25 and 30 mg/L (as $Al_2O_3$), respectively, in the mixed liquor of activated sludge. In the tertiary treatment facility, relatively lower coagulant doses of 1/12~1/3 the minimum doses for activated sludge were required to achieve the same TP concentrations of 0.2~0.5 mg/L. Increase in suspended solids concentration due to chemical precipitates in mixed liquor was estimated at 10~11%, compared to the concentration without chemical addition. When coagulant was added into mixed liquor, chemical (aluminium sulfate) cost was estimated to be 4~10 times higher than in secondary effluent coagulation/separation process. Sludge production to be wasted was also 4~10 times higher than secondary effluent coagulation/separation process.

Analysis of Proper Linked Treatment Load Using GPS-X Simulation (GPS-X 시뮬레이션을 이용한 적정 연계처리부하량 분석)

  • Kim, Sungji;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.244-250
    • /
    • 2019
  • Due to the industrial development and population growth, it has recently been shown that there are many problems caused by the rinked treatment water in local goverments and sewage treatment plants. The rinked treatment water has a characteristic of low flow rate and high concentration unlike general sewage. These characteristics increase sewage treatment difficulty and sewage treatment fee of sewage treatment facilities. Among the many influencing factors that increase sewage treatment unit cost, 'linked treatment load/design inflow load (%)' was derived as the most correlated factor. Through the selection and modeling of sewage treatment plants, the excess scope of design discharge water quality was investigated under the conditions of temperature and the conditions of 'linked treatment load/design inflow load (%)' taking into account the effects of the four seasons. The study found that for TN, 'linked treatment load/design inflow load (%)' was 19.7%, 22.6%, 25.1%and 27.7%, respectively, under conditions of $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$ and $25^{\circ}C$. In case of TP, 'rinked treatment load/design inflow load (%)' was 10.7%, 12.2%, 15.6% and 17.5% at $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$, respectively, under conditions of $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$ and $25^{\circ}C$.

A Study on Groundwater Flow Modeling in the Fluvial Aquifer Adjacent to the Nakdong River, Book-Myeon Area, Changwon City (창원시 북면 낙동강 주변 하성퇴적층의 지하수유동 모델링 연구)

  • Hamm Se-Yeong;Cheong Jae-Yeol;Kim Hyoung-Su;Hahn Jeong-Sang;Ryu Su-Hee
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.499-508
    • /
    • 2004
  • Changwon City first constructed riverbank filtration plants in Book-Myeon and Daesan-Myeon in Korea in the year 2001. This study evaluated hydrogeological characteristics and groundwater flow simulation between the Nakdong River and the fluvial aquifers adjacent to the river in Book-Myeon, Changwon City. The groundwater simulation calculated the influx rate from the Nakdong River and the fluvial aquifers to pumping wells through the riverbank filtration system. The groundwater flow model utilized drilling, grain size analysis, pumping test, groundwater level measurements, river water discharge and rainfall data. Hydraulic heads calculated by the steady-state model closely matched measured heads in pumping and observation wells. According to the transient flow model, using a total pumping amount of 14,000 $m^3$/day, the flux into the pumping wells from the Nakdong River accounts for 8,390 $m^3$/day (60%), 590 $m^3$/day (4%) is from the aquifer in the rectilinea. direction to the Nakdong River, and 5,020 $m^3$/day (36%) is from the aquifer in the parallel direction to the Nakdong River. The particle tracking analysis shows that a particle from the Nakdong River moves toward the pumping wells at a rate of about 1.85 m/day and a particle from the aquifer moves toward the pumping wells at a rate of about 0.75 m/day. This study contributes to surface water/groundwater management modeling, and helps in understanding, how seasonal change affects pumping rates, water quality, and natural recharge.