• Title/Summary/Keyword: disc brake

Search Result 206, Processing Time 0.05 seconds

A Study on the Fatigue Damage of a Railway Disc Brake Surface Due to Thermal Stress During Braking Using FEM Analysis (FEM을 이용한 철도차량용 제동 디스크의 제동시 답면에서의 열응력에 의한 피로손상에 관한 연구)

  • Joo, Se-Min;Kwon, Yong-Sang;Kim, Ho-Kyung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.212-218
    • /
    • 2009
  • In order to investigate the thermal cracking of the rolling stock brake disc, finite element analysis was conducted on the temperature distribution and thermal stress of the disc during braking. In case of initial vehicle speed of 90, 106, 120km/h, the maximum temperature on the disk surface due to braking was $135.9^{\circ}C,\;157.9^{\circ}C,\;178.7^{\circ}C$, respectively. And, the maximum von-Mises stress at the disc surface was 42.4, 50.3, 57.1MPa at a speed of 90, 105, 120km/h, respectively, indicating that the stress increases with an increment in the speed. Damage fraction due to braking during one year running on the Seoul - Busan line was determined as 14.6%.

Optimization and Structure Analysis of Brake Disc for Free-fall Winch (자유 낙하 윈치용 브레이크 디스크의 구조해석 및 최적설계)

  • Ku, Hyoun-Kon;Kim, Jin-Woo;Won, Cheon;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.55-61
    • /
    • 2012
  • The structure of winch brake disk was successfully designed and developed based on sizing optimization. In this research, static analysis was performed by commercial software ANSYS v12.0. To simulate the working process of disk brake, the real properties of materials and working conditions were considered. Based on the results of the static structural analysis, the existing designs of the brake discs were optimized. Among existing designs, there are three cases that have achieved an efficient light weight around 200g. As a result, the optimized weight of each case was 3.41kg, 3.42kg, and 3.44kg, respectively. Finally, through prototyping and performance testing, the stability of the optimized brake disc was verified. Although, this free-fall winch brake disk had been developed in design and evaluation techniques, more detailed plans for developing the disk brake structure were also proposed as a further study based on this research.

A Study on Development of Brake System of Light Eco-Friendly Car Considering Heat Load and Regenerative Braking Characteristic (열부하 및 회생 제동 특성을 고려한 경형 친환경차의 제동시스템 개발에 관한 연구)

  • Shim, J.H.;Shin, U.H.;Lee, J.H.;Hwang, S.R.;Yim, W.S.;Kim, B.C.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • Recently, there is a big issue of downsizing on brake system according to fuel efficiency and regenerative braking cooperation control. Especially, small cars have improved in a variety ways such as electric vehicle and smart car compared to previous small cars. So, small brake system is strongly required in the car industry. A new small brake system for light compact vehicles was proposed in this paper. For this system, the solid type disc and caliper were newly developed. And the important design factors were considered to reduce brake size. First, we calculated the temperature rise of disc through heat capacity formula and CAE analysis. Second, we analyzed the housing and carrier stiffness of caliper to select the reasonable condition. Finally, the superiorities of the developed brake system were verified by heat capacity, consumption liquid level, braking feeling, judder, wear test and regenerative braking cooperation control analysis. A developed brake system is expected to be useful for brake system of light compact platform.

A Study on Shape Design of Motorcycle Disk using Thermal and Stress Analysis (모터싸이클 디스크 브레이크의 열 및 응력 해석을 통한 형상 설계)

  • 강석현;박시형;이성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.363-368
    • /
    • 2001
  • Studies on brake system recently are focused on braking performance, especially the consideration on safety of braking system in an extreme situation and reduction of vibration and noise during braking operation. The thermal crack and Judder from the friction between brake disc and pad can bring the threaten of passengers' safety in the end. Braking force comes from the change of kinetic energy to friction energy. Since heat energy is developed from here, the analysis on thermal stress and thermal strain can be the good data when selecting the material of brake pad and designing heat radiation holes on the disc and it will also be the data when designing the thickness of the disc. This paper is intended to show a creative design method by suggesting the thermal analysis data through FEM study and using shape design parameters.

  • PDF

Development of the Virtual Test Technology for Evaluating Thermal Performance of Disc Brake (브레이크 열적 성능 평가를 위한 Virtual Test 기술의 개발)

  • Choi, Bong-Keun;Park, Jong-Hyun;Kim, Mi-Ro;Ahn, Byung-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.40-47
    • /
    • 2009
  • There are many kinds of simplifications and limitations in evaluating thermal performance of disc brake using the analytic technologies which were established before. But now new virtual test technology with several advanced analytic techniques is developed to evaluate the thermal performance without any possibility of great errors that used to happen for the time-consuming analysis. As a result, it was estimated that the virtual test technology could afford to replace the physical dynamo test since the reliability of virtual test technology was reasonably verified with the existing data measured in dynamo test.

Squeal Analysis of Disc Brake Using Analytical-FE Squeal Model (스퀼융합모델을 이용한 디스크 브레이크 스퀼 소음 연구)

  • Kang, Jaeyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6406-6411
    • /
    • 2014
  • This paper presents the analytical-FE (finite element) squeal model, which can provide the efficient simulation time and accuracy. The system geometry and the extraction of the vibration modes were constructed using the finite element method. Instead, the friction contact model was derived from theoretical contact kinematics of the rotating disc and the stationary pads. This modeling procedure was incorporated into the perturbed equations of motion based on the finite elements of the system. Throughout the analytical-FE squeal model, the accuracy of linear stability analysis and the simulation time of FE squeal analysis were improved. In addition, the sensitivity of contact stiffness on brake squeal and the mode-coupling mechanism were provided by the system parameter study.

A Study on Effect of Temperature Distribution in Shape Change of the Circumferential Pressing Type Disc (원주가압형 디스크의 형상변화가 온도분포에 미치는 영향에 관한 연구)

  • Kim, Hyeong-Hoon;Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.86-91
    • /
    • 2007
  • The heat generated by the brake system of vehicles results in reduction of friction force on the brake surface and vibration when breaking. These problems play essential part in break's performance. To solve these problems, extensive research has been conducted such as drilling cooling holes on the brake pud, accommodating ventilated holes and etc. In this study, we suggest the compression of brake in circumferential direction in order to improve its cooling performance. And we analyzed comparing temperature distribution which is generated accomplishing heat analysis at each disc.

  • PDF

Modal Analysis of Brake Pads with Various Slot Types (디스크 브레이크 패드의 마찰재 슬롯 형상에 따른 진동 모드)

  • 유동호;박경환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.325-328
    • /
    • 2001
  • Disc brake squeal is caused by mechanical vibrations generated from friction force excitations exerted by the pad on the rotor. In order to understand the origin of these vibrations and to speed up the design, the characterization of the individual brake system components is desirable. In this paper, the results of modal analysis are presented in terms of several slot-type with free-free boundary conditions. Special attention is paid to variations of the natural frequency at each vibration mode as the result of modifying slot pattern.

  • PDF

Casting Technology of an Aluminum Alloy Composite Brake Disc (알루미늄 복합재 제동디스크 주조 기술 개발)

  • Goo, Byeong-Choon;Kim, Myung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.971-974
    • /
    • 2011
  • Aluminum matrix composites reinforced with SiC particles(AMC) are one of the candidate materials for the weight reduction of rolling stock brake discs. It is known that weight reduction of about 40% is possible when they replace conventional cast iron brake discs. But casting is not easy because of bad wettability of SiC with Al alloy. We developed two AMC brake discs with SiC volume fraction of 20% by a new casting method. It was found the developed method produced brake discs of good quality.

  • PDF