• Title/Summary/Keyword: disaster prediction

Search Result 483, Processing Time 0.423 seconds

Performance Comparison between Neural Network Model and Statistical Model for Prediction of Damage Cost from Storm and Flood (신경망 모델과 확률 모델의 풍수해 예측성능 비교)

  • Choi, Seon-Hwa
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.271-278
    • /
    • 2011
  • Storm and flood such as torrential rains and major typhoons has often caused damages on a large scale in Korea and damages from storm and flood have been increasing by climate change and warming. Therefore, it is an essential work to maneuver preemptively against risks and damages from storm and flood by predicting the possibility and scale of the disaster. Generally the research on numerical model based on statistical methods, the KDF model of TCDIS developed by NIDP, for analyzing and predicting disaster risks and damages has been mainstreamed. In this paper, we introduced the model for prediction of damage cost from storm and flood by the neural network algorithm which outstandingly implements the pattern recognition. Also, we compared the performance of the neural network model with that of KDF model of TCDIS. We come to the conclusion that the robustness and accuracy of prediction of damage cost on TCDIS will increase by adapting the neural network model rather than the KDF model.

Prediction of Slope Failure Using Control Chart Method (통계관리도 기법을 적용한 사면붕괴 예측)

  • Park, Sung-Yong;Chang, Dong-Su;Jung, Jae-Hoon;Kim, Young-Ju;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.9-18
    • /
    • 2018
  • In this study, a field model experiment was performed to analyze the bahavior of slope during failure. It was analyzed through x-MR control chart method with inverse displacement and K-value. As a result, the portent was confirmed at 4 minutes before slope failure in Case 1. The change of the control limit line according to moving range was analyzed and it was effective to apply K = 3. Use of the inverse displacement and x-MR control chart method will be useful for the prediction of abnormal behavior through quick and objective judgment. Prediction of slope failure using control chart method can be used as basic data of slope measurement management standard, and it can contribute in reduction of life and property damage caused by slope disaster.

Design of Breakwater Disaster Prevention System on Wireless Sensor Network (무선 센서 네트워크 기반 방파제 재난 방지 시스템 설계)

  • Kim, Woon-Yong;Park, Seok-Gyu
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.699-704
    • /
    • 2009
  • The requirements of disaster prevention have been constantly increasing on highly disaster frequency by Global warming and environmental destruction. The damage occur more highly, especially when it's on the localized change of weather. It requires that we have methods of disaster prevention locally. In this paper, we design and implement a breakwater disaster prevention system integrated wireless sensor technique for the shore breakwater of East Sea that is raised anxiety about an accident occurrence due to stormy weather. The provided disaster prevention system perceive the seriousness of the situation that is chance of that happening by the information of realtime remote situation and a prediction system so that it could be of some help to reduce the damage of disaster and the cost of recovery.

  • PDF

Comparison of Sediment Disaster Risk Depending on Bedrock using LSMAP (LSMAP을 활용한 기반암별 토사재해 위험도 비교)

  • Choi, Won-il;Choi, Eun-hwa;Jeon, Seong-kon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.51-62
    • /
    • 2017
  • For the purpose of the study, of the 76 areas subject to preliminary concentrated management on sediment disaster in the downtown area, 9 areas were selected as research areas. They were classified into three stratified rock areas (Gyeongsan City, Goheung-gun and Daegu Metropolitan City), three igneous rock areas (Daejeon City, Sejong Special Self-Governing City and Wonju City) and three metamorphic rock areas (Namyangju City, Uiwang City and Inje District) according to the characteristics of the bedrock in the research areas. As for the 9 areas, analyses were conducted based on tests required to calculate soil characteristics, a predictive model for root adhesive power, loading of trees and on-the-spot research. As for a rainfall scenario (rainfall intensity), the probability of rainfall was applied as offered by APEC Climate Center (APCC) in Busan. As for the prediction of landslide risks in the 9 areas, TRIGRS and LSMAP were applied. As a result of TRIGRIS prediction, the risk rate was recorded 30.45% in stratified rock areas, 41.03% in igneous rock areas and 45.04% in metamorphic rock areas on average. As a result of LSMAP prediction based on root cohesion and the weight of trees according to crown density, it turned out to a 1.34% risk rate in the stratified rock areas, 2.76% in the igneous rock areas and 1.64% in the metamorphic rock areas. Analysis through LSMAP was considered to be relatively local predictive rather than analysis using TRIGRS.

A Study of the Sustainable Operation Technologies in the Power Plant Facilities (발전 설비 지속 가능 운영 기술 연구)

  • Lee, Chang Yeol;Park, Gil Joo;Kim, Twehwan;Gu, Yeong Hyeon;Lee, Sung-iI
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.842-848
    • /
    • 2020
  • Purpose: It is important to operate safely and economically in obsolescent power plant facilities. Economical operation is related in the balance of the supply and demand. Safety operation predicts the possible risks in the facilities and then, takes measures to the facilities. For the monitoring of the power plant facilities, we needs several kinds of the sensing system. From the sensors data, we can predict the possible risk. Method: We installed the acoustic, vibration, electric and smoke sensors in the power plant facilities. Using the data, we developed 3 kinds of prediction models, such as, demand prediction, plant engine abnormal prediction model, and risk prediction model. Results: Accuracy of the demand prediction model is over 90%. The other models make a stable operation of the system. Conclusion: For the sustainable operation of the obsolescent power plant, we developed 3 kinds of AI prediction models. The model apply to JB company's power plant facilities.

A stress model reflecting the effect of the friction angle on rockbursts in coal mines

  • Fan, Jinyang;Chen, Jie;Jiang, Deyi;Wu, Jianxun;Shu, Cai;Liu, Wei
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Rockburst disasters pose serious threat to mining safety and underground excavation, especially in China, resulting in massive life-wealth loss and even compulsive closed-down of some coal mines. To investigate the mechanism of rockbursts that occur under a state of static forces, a stress model with sidewall as prototype was developed and verified by a group of laboratory experiments and numerical simulations. In this model, roadway sidewall was simplified as a square plate with axial compression and end (horizontal) restraints. The stress field was solved via the Airy stress function. To track the "closeness degree" of the stress state approaching the yield limit, an unbalanced force F was defined based on the Mohr-Coulomb yield criterion. The distribution of the unbalanced force in the plane model indicated that only the friction angle above a critical value could cause the first failure on the coal in the deeper of the sidewall, inducing the occurrence of rockbursts. The laboratory tests reproduced the rockburst process, which was similar to the prediction from the theoretical model, numerical simulation and some disaster scenes.

An Improvement Study on the Hydrological Quantitative Precipitation Forecast (HQPF) for Rainfall Impact Forecasting (호우 영향예보를 위한 수문학적 정량강우예측(HQPF) 개선 연구)

  • Yoon Hu Shin;Sung Min Kim;Yong Keun Jee;Young-Mi Lee;Byung-Sik Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.87-98
    • /
    • 2022
  • In recent years, frequent localized heavy rainfalls, which have a lot of rainfall in a short period of time, have been increasingly causing flooding damages. To prevent damage caused by localized heavy rainfalls, Hydrological Quantitative Precipitation Forecast (HQPF) was developed using the Local ENsemble prediction System (LENS) provided by the Korea Meteorological Administration (KMA) and Machine Learning and Probability Matching (PM) techniques using Digital forecast data. HQPF is produced as information on the impact of heavy rainfall to prepare for flooding damage caused by localized heavy rainfalls, but there is a tendency to overestimate the low rainfall intensity. In this study, we improved HQPF by expanding the period of machine learning data, analyzing ensemble techniques, and changing the process of Probability Matching (PM) techniques to improve predictive accuracy and over-predictive propensity of HQPF. In order to evaluate the predictive performance of the improved HQPF, we performed the predictive performance verification on heavy rainfall cases caused by the Changma front from August 27, 2021 to September 3, 2021. We found that the improved HQPF showed a significantly improved prediction accuracy for rainfall below 10 mm, as well as the over-prediction tendency, such as predicting the likelihood of occurrence and rainfall area similar to observation.

Analysis on The Characteristics of Occupancy Prediction and The Fire Hazard in Narrow Dwelling Space (협소 거주공간 재실자 특성 및 화재위험성 분석)

  • Lee, Changwoo;Oh, Seungju;Yoo, Juyoul;Kim, Jinsung;Cho, Ahra;Cho, Yongsun
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.342-349
    • /
    • 2016
  • The objectives of this study is analysis of the characteristics of fire risk and survey of narrow dwelling space(the Karaoke, Gosiwon etc). The narrow dwelling space has special structure characteristics; the narrow and the complex escape rote. Gosiwon have very separate and exclusive space room, so have the problem a suppression of fire. Furthermore almost Karaokes located in basement have a complex and limitary escape rote. Therefore we should research and development the exploration equipment that search a source of the fire and a emergency rescuer in the scene of the fire.

Development of model for prediction of land sliding at steep slopes (급경사지 붕괴 예측을 위한 모형 개발)

  • Park, Ki-Byung;Joo, Yong-Sung;Park, Dug-Keun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.691-699
    • /
    • 2011
  • Land sliding is one of well-known nature disaster. As a part of effort to reduce damage from land sliding, many researchers worked on increasing prediction ability. However, because previous studies are conducted mostly by non-statisticians, previously proposed models were hardly statistically justifiable. In this paper, we predicted the probability of land sliding using the logistic regression model. Since most explanatory variables under consideration were correlated, we proposed the final model after backward elimination process.

Suggestions for an Effective Earthquake R&D Strategy in Korea through an Analysis of Japan's Earthquake Disaster Prevention System (일본의 지진방재·대응 시스템 분석을 통한 효과적인 우리나라 지진 R&D 전략 제언)

  • Kim, Seong-Yong;Lee, Jae-Wook
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.321-336
    • /
    • 2020
  • The Headquarters for Earthquake Research Promotion (HERP) represents the upper-most level of Japan's earthquake disaster prevention governance. Its policy committee establishes the national earthquake investigation research promotion plan. The earthquake investigation committee of HERP collects survey geo-data and evaluates the research results of each earthquake disaster prevention agency. The establishment of an earthquake-related geo-resilience research strategy is both necessary and desirable for Korea. The concept of geo-resilience entails the ability to improve disaster resilience through the application of research results and the convergence of geoscience with science and technology (S&T) including the humanities and social sciences. The achievement of geo-resilience requires a national long-term roadmap and strategy for earthquake prediction research, the development of earthquake disaster prediction and prevention technology, Geo-ICT convergence technology development, implementation of a geocyber physics system (Geo-CPS), the use of geo-mimetics, and geoscientific R&D as it relates to local communities. Through such efforts, the national research institutes of Korea will be able to develop earthquake prediction capacities in relevant fields, reinforce proactive response capabilities, enhance community-level confidence in geodata and its research results, foster next-generation geoscientific manpower, and expand geoscientific infrastructure.