Browse > Article
http://dx.doi.org/10.12989/gae.2019.18.1.021

A stress model reflecting the effect of the friction angle on rockbursts in coal mines  

Fan, Jinyang (State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University)
Chen, Jie (State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University)
Jiang, Deyi (State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University)
Wu, Jianxun (State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University)
Shu, Cai (State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University)
Liu, Wei (State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University)
Publication Information
Geomechanics and Engineering / v.18, no.1, 2019 , pp. 21-27 More about this Journal
Abstract
Rockburst disasters pose serious threat to mining safety and underground excavation, especially in China, resulting in massive life-wealth loss and even compulsive closed-down of some coal mines. To investigate the mechanism of rockbursts that occur under a state of static forces, a stress model with sidewall as prototype was developed and verified by a group of laboratory experiments and numerical simulations. In this model, roadway sidewall was simplified as a square plate with axial compression and end (horizontal) restraints. The stress field was solved via the Airy stress function. To track the "closeness degree" of the stress state approaching the yield limit, an unbalanced force F was defined based on the Mohr-Coulomb yield criterion. The distribution of the unbalanced force in the plane model indicated that only the friction angle above a critical value could cause the first failure on the coal in the deeper of the sidewall, inducing the occurrence of rockbursts. The laboratory tests reproduced the rockburst process, which was similar to the prediction from the theoretical model, numerical simulation and some disaster scenes.
Keywords
failure; numerical analyses; plasticity; rock; triaxial tests;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Bai, H., Li, W., Ding, Q., Wang, Q. and Yang, D. (2015a), "Interaction mechanism of the interface between a deep buried sand and a paleo-weathered rock mass using a high normal stress direct shear apparatus", Int. J. Min. Sci. Technol., 25(4), 623-628. https://doi.org/10.1016/j.ijmst.2015.05.016.   DOI
2 Bai, Q., Tu, S., Li, Z. and Tu, H. (2015b), "Theoretical analysis on the deformation characteristics of coal wall in a longwall top coal caving face", Int. J. Min. Sci. Technol., 25(2), 199-204. https://doi.org/10.1016/j.ijmst.2015.02.006.   DOI
3 Cai, M. (2013), "Principles of rock support in burst-prone ground", Tunn. Undergr. Sp. Technol., 36, 46-56. https://doi.org/10.1016/j.tust.2013.02.003.   DOI
4 He, M., Xia, H., Jia, X., Gong, W., Zhao, F. and Liang, K. (2012c), "Studies on classification, criteria and control of rockbursts", J. Rock Mech. Geotech. Eng., 4(2), 97-114. https://doi.org/10.3724/SP.J.1235.2012.00097.   DOI
5 He, M.C., Miao, J.L. and Feng, J.L. (2010), "Rock burst process of limestone and its acoustic emission characteristics under truetriaxial unloading conditions", Int. J. Rock Mech. Min. Sci., 47(2), 286-298. https://doi.org/10.1016/j.ijrmms.2009.09.003.   DOI
6 Konicek, P., Soucek, K., Stas, L. and Singh, R. (2013), "Long-hole destress blasting for rockburst control during deep underground coal mining", Int. J. Rock Mech. Min. Sci., 61, 141-153. https://doi.org/10.1016/j.ijrmms.2013.02.001.   DOI
7 Lesniak, A. and Isakow, Z. (2009), "Space-time clustering of seismic events and hazard assessment in the Zabrze-Bielszowice coal mine, Poland", Int. J. Rock Mech. Min. Sci., 46(5), 918-928. https://doi.org/10.1016/j.ijrmms.2008.12.003.   DOI
8 Li, X., Wang, E., Li, Z., Bie, X., Chen, L., Feng, J. and Li, N. (2016), "Blasting wave pattern recognition based on Hilbert-Huang transform", Geomech. Eng., 11(5), 607-624. https://doi.org/10.12989/gae.2016.11.5.607.   DOI
9 Lu, A.H., Mao, X.B. and Liu, H.S. (2008), "Physical simulation of rock burst induced by stress waves", J. China Univ. Min. Technol., 18(3), 401-405. https://doi.org/10.1016/S1006-1266(08)60084-X.   DOI
10 Li, Z., Dou, L., Cai, W., Wang, G., He, J., Gong, S. and Ding, Y. (2014), "Investigation and analysis of the rock burst mechanism induced within fault-pillars", Int. J. Rock Mech. Min. Sci., 70, 192-200. https://doi.org/10.1016/j.ijrmms.2014.03.014.   DOI
11 Lu, C.P., Dou, L.M., Liu, B., Xie, Y.S. and Liu, H.S. (2012), "Microseismic low-frequency precursor effect of bursting failure of coal and rock", J. Appl. Geophys., 79, 55-63. https://doi.org/10.1016/j.jappgeo.2011.12.013.   DOI
12 Ning, J., Wang, J., Liu, X., Qian, K. and Sun, B. (2014), "Softstrong supporting mechanism of gob-side entry retaining in deep coal seams threatened by rockburst", Int. J. Min. Sci. Technol., 24(6), 805-810. https://doi.org/10.1016/j.ijmst.2014.10.012.   DOI
13 Chen, X., Li, W. and Yan, X. (2012), "Analysis on rock burst danger when fully-mechanized caving coal face passed fault with deep mining", Safety Sci., 50(4), 645-648. https://doi.org/10.1016/j.ssci.2011.08.063.   DOI
14 Dou, L.M., He, X.Q., Hu, H.E., He, J. and Fan, J. (2014), "Spatial structure evolution of overlying strata and inducing mechanism of rockburst in coal mine", Trans. Nonferr. Metals Soc. China, 24(4), 1255-1261. https://doi.org/10.1016/S1003-6326(14)63187-3.   DOI
15 Driad-Lebeau, L., Lahaie, F., Al Heib, M., Josien, J.P., Bigarre, P. and Noirel, J.F. (2005), "Seismic and geotechnical investigations following a rockburst in a complex French mining district", Int. J. Coal Geol., 64(1-2), 66-78. https://doi.org/10.1016/j.coal.2005.03.017.   DOI
16 Lu, C.P., Liu, G.J., Liu, Y., Zhang, N., Xue, J.H. and Zhang, L. (2015), "Microseismic multi-parameter characteristics of rockburst hazard induced by hard roof fall and high stress concentration", Int. J. Rock Mech. Min. Sci., 76, 18-32. https://doi.org/10.1016/j.ijrmms.2015.02.005.   DOI
17 Luo, J. (2013), "Research on the mechanism of rock burst in coal roadway under extremely thick igneous rocks and control techniques", China University of Mining and Technology, Xuzhou, China.
18 Ortlepp, W.D. and Stacey, T.R. (1994), "Rockburst mechanisms in tunnels and shafts", Tunn. Undergr. Sp. Technol., 9(1), 59-65. https://doi.org/10.1016/0886-7798(94)90010-8.   DOI
19 Pan, J., Meng, Z., Hou, Q., Ju, Y. and Li, G. (2009), "Influence of the roof lithological characteristics on rock burst: A case study in Tangshan colliery, China", Geomech. Eng., 1(2), 143-154. https://doi.org/10.12989/gae.2009.1.2.143.   DOI
20 Senfaute, G., Chambon, C., Bigarre, P., Guise, Y. and Josien, P.J. (1997), "Spatial distribution of mining tremors and the relationship to rockburst hazard", Pure Appl. Geophys., 150(3), 451-459. https://doi.org/10.1007/s000240050087.   DOI
21 Song, D., Wang, E., Li, Z., Qiu, L. and Xu, Z. (2017), "An effective method for monitoring and warning of rock burst hazard", Geomech. Eng., 12(1), 53-69. https://doi.org/10.12989/gae.2017.12.1.53.   DOI
22 Wang, L., Lu, Z. and Gao, Q. (2012), "A numerical study of rock burst development and strain energy release", Int. J. Min. Sci. Technol., 22(5), 675-680. https://doi.org/10.1016/j.ijmst.2012.08.014.   DOI
23 Fan, J., Chen, J., Jiang D., Chemenda A., Chen J. and Ambre J. (2017), "Discontinuous cyclic loading test with acoustic emssion monitoring", Int. J. Fatigue, 94(1), 140-144. https://doi.org/10.1016/j.ijfatigue.2016.09.016.   DOI
24 Fan, J., Chen, J., Jiang D., Ren S. and Wu J. (2016), "Fatigue properties of rock salt subjected to interval cyclic pressure", Int. J. Fatigue, 90(9), 109-115. https://doi.org/10.1016/j.ijfatigue.2016.04.021.   DOI
25 Fan, J., Dou, L., He, H., Du, T., Zhang, S., Gui, B. and Sun, X. (2012), "Directional hydraulic fracturing to control hard-roof rockburst in coal mine", Int. J. Min. Sci. Technol., 22(2), 177-181. https://doi.org/10.1016/j.ijmst.2011.08.007.   DOI
26 Taupin, V., Berbenni, S., Fressengeas, C. and Bouaziz, O. (2010), "On particle size effects: An internal length mean field approach using field dislocation mechanics", Acta Materialia, 58(16), 5532-5544. https://doi.org/10.1016/j.actamat.2010.06.034.   DOI
27 Tsirel, S.V. and Krotov, N.V. (2001), "Probability interpretation of indirect risk criteria and estimate of rock-burst hazard in mining anthracite seams", J. Min. Sci., 37(3), 240-260. https://doi.org/10.1023/A:1013194110443.   DOI
28 Xu, X., Dou, L., Lu, C. and Zhang, Y. (2010), "Frequency spectrum analysis on micro-seismic signal of rock bursts induced by dynamic disturbance", Min. Sci. Technol., 20(5), 682-685. https://doi.org/10.1016/S1674-5264(09)60262-3.   DOI
29 Yan, Y. (2011), "Research on the mechanism and technology of rock burst control in Datong coal mining area", Taiyuan University of Technology, Taiyuan, China.
30 Yong, L. (2015), "Study of mechanism and control of coal bumps in JIXI mine area", China University of Mining and Technology, Xuzhou, China.
31 Zhang, R.L., Wang, Z.J. and Chen, J.W. (2012), "Experimental research on the variational characteristics of vertical stress of soft coal seam in front of mining face", Safety Sci., 50(4), 723-727. https://doi.org/10.1016/j.ssci.2011.08.045.   DOI
32 He, H., Dou, L., Fan, J., Du, T. and Sun, X. (2012a), "Deep-hole directional fracturing of thick hard roof for rockburst prevention", Tunn. Undergr. Sp. Technol., 32, 34-43. https://doi.org/10.1016/j.tust.2012.05.002.   DOI
33 Feng, X., Wang, E., Shen, R., Wei, M., Yu, C. and Cao, X. (2011), "The dynamic impact of rock burst induced by the fracture of the thick and hard key stratum", Procedia Eng., 26, 457-465. https://doi.org/10.1016/j.proeng.2011.11.2192.   DOI
34 Frid, V. (1997), "Rockburst hazard forecast by electromagnetic radiation excited by rock fracture", Rock Mech. Rock Eng., 30(4), 229-236. https://doi.org/10.1007/BF01045719.   DOI
35 Fujii, Y., Ishijima, Y. and Deguchi, G. (1997), "Prediction of coal face rockbursts and microseismicity in deep longwall coal mining", Int. J. Rock Mech. Min. Sci., 34(1), 85-96. https://doi.org/10.1016/S1365-1609(97)80035-4.   DOI
36 He, J., Dou, L.M., Cao, A.Y., Gong, S.Y. and Lu, J.W. (2012b), "Rock burst induced by roof breakage and its prevention", J. Central South Univ., 19(4), 1086-1091. https://doi.org/10.1007/s11771-012-1113-3.   DOI
37 Alehossein, H. and Poulsen, B.A. (2010), "Stress analysis of longwall top coal caving", Int. J. Rock Mech. Min. Sci., 47(1), 30-41. https://doi.org/10.1016/j.ijrmms.2009.07.004.   DOI
38 Zhou, X. and Qian, Q. (2013), "The non-Euclidean model of failure of the deep rock masses under the deformation incompatibilty condition", J. Min. Sci., 49(3), 368-375. https://doi.org/10.1134/S1062739149030039.   DOI
39 Zhang, X. and Aifantis, K.E. (2015), "Examining the evolution of the internal length as a function of plastic strain", Mater. Sci. Eng. A, 631, 27-32. https://doi.org/10.1016/j.msea.2015.01.011.   DOI
40 Zhao, Y. and Jiang, Y. (2010), "Acoustic emission and thermal infrared precursors associated with bump-prone coal failure", Int. J. Coal Geol., 83(1), 11-20. https://doi.org/10.1016/j.coal.2010.04.001.   DOI
41 Zhou, X.P., Qian, Q.H. and Yang, H.Q. (2011), "Rock burst of deep circular tunnels surrounded by weakened rock mass with cracks", Theor. Appl. Fract. Mech., 56(2), 79-88. https://doi.org/10.1016/j.tafmec.2011.10.003.   DOI