• Title/Summary/Keyword: directional coupler

Search Result 238, Processing Time 0.025 seconds

Design of Novel Wiggly Directional Coupler with the Fractal Coupled Sections for Improving Coupling

  • Hong, Ic-Pyo
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.55-58
    • /
    • 2008
  • In this paper, the new type wiggly directional coupler which uses the fractal coupled shape in coupled sections is presented. A commercial software has been used to analyze this new structure and the simulation results are compared to those of the conventional wiggly directional coupler. To verify the simulation results, the new type wiggly directional coupler was fabricated with the center frequency of 15GHz. The measurement results shows that the coupling of new structure proposed in this paper is more than that of conventional wiggly coupler. The results in this paper also show that the fractal shape coupled lines in wiggling sections can improve the coupling characteristics in wiggly directional coupler.

A Reconfigurable Directional Coupler Using a Variable Impedance Mismatch Reflector for High Isolation

  • Lee, Han Lim;Park, Dong-Hoon;Lee, Moon-Que
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.206-209
    • /
    • 2016
  • This letter proposes a reconfigurable directional coupler that uses a variable impedance mismatch reflector to achieve high isolation characteristics in the antenna front end. The reconfigurable coupler consists of a directional coupler and a single-pole four-throw (SP4T) switch with different load impedances as a variable load mismatch reflector. Selection of the load impedance by the reflector allows cancellation of the reflected signal due to antenna load mismatch and the leakage from the input to isolation port of the directional coupler, resulting in high isolation characteristics. The performance of the proposed architecture in separating the received (Rx) signal from the transmitted (Tx) signal in the antenna front end was verified by implementing and testing the reconfigurable coupler at 917 MHz for UHF radio-frequency identification (RFID) applications. The proposed reconfigurable directional coupler showed an improvement in the isolation characteristics of more than 20 dB at the operation frequency band.

Characteristics of Coupler with high Directivity (높은 지향성을 갖는 결합기 특성)

  • Park, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.317-321
    • /
    • 2012
  • In this paper, properties of directional coupler with high directivity was investigated. The directional couler is used to check and verify the power, frequency, and antenna reflection of signal at transmission station for mobile communications. To get the high directivity in the directional coupler, directional coupler was simulated and fabricated. we obtained the directional coupler having more than 31dB directivity.

Extraction of Design Parameters for Re-entrant Mode Microstrip Directional Coupler with High Directivity Using FE Calculation (유한요소계산을 이용한 고지향성을 갖는 재-진입모드 마이크로스트립 방향성 결합기의 설계 파라미터 추출)

  • Kim, Hyeong-Seok;Park, Jun-Seok;Ahn, Dal
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.238-242
    • /
    • 2001
  • In this paper, we extracted design parameters for re-entrant mode microstrip directional coupler using FE(finite element) calculations. The microstrip directional coupler suffers from a poor directivity due to effect of the inhomogeneous dielectric including both dielectric substrate and air in microstrip transmission lines. Thus, the phase velocity of even mode is not equal to that of odd mode. In order to improve the directivity of microstrip directional coupler, a novel re-entrant mode microstrip directional coupler was employed. In microstrip configuration, the high directivity can be reached by matching the even- and odd-mode effective phase velocities. Through the values of capacitance obtained from 2-dimensional FE calculations, the phase velocities for each mode and the design parameter were extracted for the proposed parallel coupled-line configuration. Based on the extracted design parameter with phase matching condition, we designed and fabricated a 30dB directional coupler at 0.85GHz. Experimental results show good performance with excellent, isolation and directivity.

  • PDF

Branch line directional coupler with coupled lines (결합 선로를 이용한 브랜치 선로 방향성 결합기)

  • Han, Dae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.286-291
    • /
    • 2011
  • Directional couplers are widely used in RF and microwave applications to distribute or monitor signals. This paper presented a new structure of microstrip branch line directional coupler with coupled lines. The loose couplings of microstrip branch line directional couplers are impractical for the high characteristic impedance values required for the shunt branches. To overcome this limitation, the parallel coupled lines with the shorts were used for the high characteristic impedance. The results of the simulations and measurements were presented for the proposed branch line directional coupler. Measurement of the 10 dB branch line directional coupler shows that the return loss is higher than 30 dB over 10 % bandwidth and the isolation is 35 dB or better over 8 % bandwidth.

Design and Implementation of a directional coupler with high directivity using Branch Line Structure (Branch-Line 구조를 이용한 높은 방향성을 가지는 결합기 설계 및 제작)

  • 심부석;이승철;한대현;안점영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.350-353
    • /
    • 2003
  • In this paper, we designed and implemented a 10dB directional coupler with high directivity using branch line structure. The characteristic impedance of parallel branch line for 10 dB directional coupler is about 150 $\Omega$. To realize high characteristic impedance in microstrip line, we used the coupled line structure. The directional coupler were implemental and measured. The measured results show that the directivity is high than 24 dB.

  • PDF

Design of a Novel Lumped Element Backward Directional Coupler Based on Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 새로운 집중 소자형 방향성 결합기 해석 및 설계)

  • 송택영;이상현;김영태;천창율;박준석
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.157-160
    • /
    • 2002
  • In this paper, a novel lumped equivalent circuit for a conventional parallel directional coupler is proposed. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even-and odd-mode properties of a parallel-coupled line. By using the derived design formula, we have designed the 3㏈ and 10㏈ lumped element directional couplers at the center frequency of 100Mhz. Furthermore, a chip type directional coupler has been designed to fabricate with multilayer configurations by employing the Low Temperature CofiredCeramic (LTCC) process. Designed chip-type directional coupler has a 10㏈-coupling value at the center frequency of 2㎓. Excellent agreements between simulations and measurements on the designed directional couplers show the validity of this paper

  • PDF

Design of Miniaturized Directional Coupler Utilizing Lumped Element (집중소자를 이용한 소형화된 방향성 결합기 설계)

  • Yong, Kwang-Seong;Yook, Jong-Gwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.251-255
    • /
    • 2003
  • In this paper, a miniaturized directional coupler utilizing lumped element is proposed as a interdigital capacitor. The traditional miniaturization technique of transmission line realized a utilizing MIM(Metal-Insulator-Metal) capacitor on CPW(Coplanar Waveguide). However, we present a simplified design procedure without additional manufacturing process utilizing interdigital capacitor on microstrip with ease of design. The similar characteristics between the conventional directional coupler with ${\lambda}/4$ transmission line and the miniaturized directional coupler with ${\lambda}/8$ transmission line are validated through simulation and measurement results. Miniaturization rate of total size is about 25% while coupled line is about 60%. As a result, this proposed directional coupler can reduce the size of mobile communication system at 2 GHz.

  • PDF

The study on the development of directional coupler of EGSM band using a Low Temperature Co-fire dielectric material (저온 소성 유전체 재료를 이용한 EGSM 대역 directional coupler 개발에 관한 연구)

  • Yoo, Joshua;Kim, Erick;Lee, W.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.288-291
    • /
    • 2003
  • Nowadays, the study on the ceramic components and modules used in telecommunication system is being performed. Coupler is a microwave passive component used for power coupling or dividing and directional coupler is designed to be possible optional dividing percentage. In our research, We developed 14dB and 19dB directional couplers of EGSM band. The good characteristics, the target insertion loss and high isolation, of couplers is obtained by LTCC processing using a ceramic material.

  • PDF

The design of the EDEA gain flattening filter using an asymmetrical directional coupler (비대칭 구조의 커플러를 이용한 EDFA 이득평탄필터 설계)

  • 조준용;이경식
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.373-376
    • /
    • 2002
  • An asymmetrical directional coupler with two nonidentical fibers has, for the first time, been proposed and analyzed for an EDFA gain flattening filter (GFF). The characteristics of the transmission spectra of the GFFs have been theoretically investigated for the core spacings, the coupling lengths and the fiber parameters of the asymmetrical directional coupler. The analytical results show that an EDFA gain spectrum with flatness of ~7 ㏈ can be flattened to within $\pm$0.75 ㏈ over a bandwidth of 30 nm by using the asymmetrical directional coupler-based GFF.