• 제목/요약/키워드: direction of impact

검색결과 1,175건 처리시간 0.026초

Finite element analysis of RC walls with different geometries under impact loading

  • Husem, Metin;Cosgun, Suleyman I.;Sesli, Hasan
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.583-592
    • /
    • 2018
  • Today, buildings are exposed to the effects such as explosion and impact loads. Usually, explosion and impact loads that act on the buildings such as nuclear power plants, airports, defense industry and military facilities, can occur occasionally on the normal buildings because of some reasons like drop weight impacts, natural gas system explosions, and terrorist attacks. Therefore, it has become important to examine the behavior of reinforced concrete (RC) structures under impact loading. Development of computational mechanics has facilitated the modeling of such load conditions. In this study, three kinds of RC walls that have different geometric forms (square, ellipse, and circle) and used in guardhouses with same usage area were modeled with Abaqus finite element software. The three configurations were subjected to the same impact energy to determine the geometric form that gives the best behavior under the impact loading. As a result of the analyses, the transverse impact forces and failure modes of RC walls under impact loading were obtained. Circular formed (CF) reinforced concrete wall which has same impact resistance in each direction had more advantages. Nonetheless, in the case of the impact loading occurring in the major axis direction of the ellipse (EF-1), the elliptical formed reinforced concrete wall has higher impact resistance.

주거개발사업의 환경영향평가제도 개선방향 (The Improvement Direction of the Environmental Impact Assessment System for Residential Developments)

  • 김흥식;정진형;최명수;안정근;김상규;김종대;전주영
    • 환경영향평가
    • /
    • 제7권1호
    • /
    • pp.117-123
    • /
    • 1998
  • The present study was performed to improve the Environmental Impact Assessment system by comparing and analysing EIA systems for Residential Developments in the light of the business practice. For the improvement of EIA system, future strategies from each of three part ; the organ of approval(Construction&Transportation Dept.) for residential developments, the organ of consultation(Environment Dept.) for EIA and a developer(Korea Nation Housing Corp.), were analysed, and EIA systems and the processes of Residential developments were analysed. Results from the analysis of problems have provided a proposal for improvement of the Environmental Impact Assessment.

  • PDF

저속 추돌시 충돌방향에 따른 목상해 해석 (A Study on Influence of the Impact Direction on the Neck Injury during Low Speed Rear Impacts)

  • 조휘창;김영은
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.135-142
    • /
    • 2007
  • MADYMO human model with the detail neck was used to investigate the reaction force of neck and neck injury from rear impact directions. In the validation simulation, head acceleration, thorax acceleration and the global kinematics of the head and neck were correlated well with experimental data. Acceleration data from three 15 km/h low speed car rear impact pendulum tests(rear-end, offset, oblique) were used to simulate the model. In the simulation results, the reaction force on the facet joint and discs in the oblique rear impact were higher than rear-end, offset rear impacts. Further research is still needed in order to neck injury analysis about different crash parameters.

저속충격에 의한 복합재료 적층판의 손상 (Damage of Composite Laminates by Low-Velocity Impact)

  • 안석환;김진욱;도재윤;김현수;남기우
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.39-43
    • /
    • 2005
  • The study investigated the nondestructive characteristics of damage, caused by law-velocity impact, on symmetric cross-ply laminates, composed of [0o/90o]16s, 24s, 32s, 48s. The thickness of the laminates was 2, 3, 4 and 6 mm, respectively. The impact machine used, Model 8250 Dynatup Instron, was a drop-weight type that employed gravity. The impact velocities used in this experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec, respectively. Both the load and the deformation increased when the impact velocity was increased. Further, when the load increased with the laminate thickness in the same impact velocity, the deformation still decreased. The extensional velocity was quick, as the laminate thickness increased in the same impact velocity and the impact velocity increased in the same laminate thickness. In the ultrasonic scans, the damaged area represented a dimmed zone. This is due to the fact that the wave, after the partial reflection by the deflects, does not have enough energy to touch the opposite side or to come back from it. The damaged laminate areas differed, according to the laminate thickness and the impact velocity. The extensional velocities are lower in the 0o direction and higher in the 90o direction, when the size of the defect increases. However, it was difficult to draw any conclusion for the extensional velocities in the 45o direction.

저속충격에 의한 복합재료 적층판의 손상 (Damage of Composite Laminates by Low-Velocity Impact)

  • 남기우;안석환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.284-288
    • /
    • 2003
  • This study was investigated the nondestructive characteristics of the damage caused by low-velocity impact on symmetric cross-ply laminates. These laminates were $[0^{\circ}/90^{\circ}]{_{16s,}}\;{_{24s,}}\;{_{32s,}}\;{_{48s}}$, that is, the thickness was 2, 3, 4 and 6 mm. The impact machine, model 8250 Dynatup Instron, was used a drop-weight type with gravity. The impact velocities used in experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec. The load and deformation were increased as impact velocity increase. Even if the load increased with laminates thickness in same impact velocity, the deformation decreased. The extensional velocity was a quick as laminate thickness increase in same impact velocity and as impact velocity increase in same laminate thickness. In ultrasonic scans, damaged area was represented an dimmed zone. This is due to the fact that the wave, after having been partially reflected by the defects, has not enough energy to tough the oposite side or to come back from it. The damaged laminate areas were different according to the laminate thickness and the impact velocity. The extensional velocities became lower in if direction and higher in $0^{\circ}$ direction when the size of the defects increases. But, it was difficult to draw any conclusion for the extensional velocities in $45^{\circ}$ direction.

  • PDF

국가간 적대감 유형이 소비자 인지와 소비행동 방향에 미치는 영향 : 고립공포감의 조절효과를 중심으로 (The Effect of Animosity Type on Consumer Cognition and Consumption Behavior Direction : Based on the Moderating Role of Fear of Missing Out)

  • 마일환
    • 무역학회지
    • /
    • 제47권5호
    • /
    • pp.321-336
    • /
    • 2022
  • The purpose of this study aims to investigate how consumer awareness and purchasing behavior are affected by the type of animosity against the nation. This study classified animosity into three categories: sociocultural, economic, and war-based. Additionally, the consumer's cognition toward animosity was split into two categories-empathic concernt and personal distress-and the direction of consumption behavior was split into two categories-individual brand avoidance behavior and collective bandwagon behavior. The concept of Fear of Missing Out (FoMO) was introduced for the direction of consumption behavior, further validating the moderating impact. Structural equation modeling method was used to measure the general consumption behvior of Korean consumers' animosity. The results were analyzed using a total of 279 samples. As a result, animosity motivated by war and by economics had a substantial impact on empathic concern, while animosity motivated by socioculture had a significant impact on personal distress. Personal distress had a good impact on an individual's brand antipathy behavior, which in turn led to brand dislike and avoidance. Empathic concern also had a positive impact on the phenomena of group sympathy, which leads to identification of conduct and social conformity. Also, it was proven that the group that had a high level of FoMO reacted strongly to the phenomenon of group collective behavior.

알루미늄 하니컴 샌드위치 판넬의 저속충격거동 (Low-velocity Impact Behavior of Aluminum Honeycomb Sandwich Panel)

  • 이현석;배성인;함경춘;한경섭;송정일
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.78-82
    • /
    • 2001
  • Impact behaviors of Aluminum Honeycombs Sandwich Panel(AHSP) by drop weight test were investigated. Two types of specimens with 1/2" and 1/4" cell size were tested by two impactors which are weight of $5.25\textrm{kg}_{\textrm{f}}$ and $11.9\textrm{kg}_{\textrm{f}}$. Parametric studies were achieved including the impactor weight and impact sites which consist face, long-edge, short-edge, and point of the specimen. Face one of impact sites was the strongest and short-edge one of impact sites was the weakest. The damaged area of AHSP was enlarged with the increase of impactor weight that is equal to impact energy. After 3 point bending test, fracture modes of AHSP were analyzed with AE counts. Lower facesheet was fractured in the long-edge direction and then separated between facesheet and core. In the short-edge direction after core wrinkled, lower facesheet tear occurred. Impact behavior by FE analysis were increased localized damage in fast velocity because the faster velocity of the impact was, the smaller the stress of core was. Consequently, impactor weight had an effect on widely damaged area, while the impact velocity was caused on the localized damaged area.aged area.

  • PDF

스쿼시 포핸드 드라이브 동작의 임팩트시 운동학적 주요요인 분석 (An Analysis on Kinematically Contributing Factors at Impact of Forehand Drive Motion in Squash)

  • 이경일;이희경
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.29-39
    • /
    • 2007
  • This study were obtained elapsed time phase-by-phases, displacement, user angle, velocity and angular velocity to analyse kinematically contributing factors at impact of forehand drive motion, on targeting three male players. The results of the study were presented as follows; In the forehand drive swing, the elapsed time by phases was a total of .52 seconds: .30 seconds from backswing to impact and .22 seconds from impact to follow-through, Considering the mean change in locations of COM of each(part$\rightarrow$body segment) at impact, racket head, left shoulder, right wrist and left hip, the left-right directions(X-axis) were showm to be each $.61{\pm}.03$, $1.19{\pm}.08$, $.66{\pm}.03$, $.94{\pm}.06$, and $.45{\pm}.03m$. The displacement differences of COM of each body segment were shown to be -.57, -.05, -.33, and .16m. For the vertical direction(Z-axis), the center of mass was lowest at impact and highest at E3. For the displacement of the right wrist on the left hip, the right wrist moved to .82m to the lower direction without change in the locations of the hip from E1 from E2. When the left hip moved .02m from E2 to E3, the right wrist moved .7m in the upper direction. In respect to the velocity of each body segment, the hip and the shoulder joint accelerated and then the wrist followed. Then the right wrists of all the subjects and their racket heads showed maximum speed, and an effective swing was observed. At the angle of each part, the angle of the right wrist was the smallest at the backswing and the largest at the moment of the impact. Then it increased gradually in the follow-through section. In respect of angular velocity for subject A, the hip moved and the largest change occurred. Immediately before the impact, the subject made a swing using his right wrist, his hip, and the shoulder joint, showing the maximum value, which was judged to be effective.

임팩트 타원을 이용한 임팩트의 최소화 (Impact minimization by impact ellipsoids)

  • 이지홍;이영일;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.726-729
    • /
    • 1996
  • A weighted impact ellipsoid normalized by maximum allowable angular velocity changes is defined and compared with conventional impact ellipsoids and impact polytopes. The results shows that the conventional impact ellipsoid may give false solution as far as the optimal direction of motion is concerned.

  • PDF

Effect of Temperature on the Charpy Impact and CTOD Values of Type 304 Stainless Steel Pipeline for LNG Transmission

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Kho, Young-Tai
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1064-1071
    • /
    • 2002
  • Stainless steel pipe of type 304 the with a wall thickness of 26.9 mm and the outer diameter 406.4 mm is welded by manual arc welding process. Mechanical properties and fracture toughness of type 304 stainless steel are investigated in the temperature ranging from room temperature to -162$^{\circ}C$ The results obtained are summarized as follows. The tensile strength noticeably increases as the temperature becomes lower while the yield strength is relatively insensitive to temperature. The Charpy impact energy and CTOD values become higher in the case that crack propagation direction is aligned to the transverse axis upon the rolling direction than longitudinal direction. The drop of fracture toughness is associated with the noticeable diminution of plastic component as temperature seduces from room temperature to -162$^{\circ}C$ .