• Title/Summary/Keyword: direction of arrival (DOA) estimation

Search Result 86, Processing Time 0.028 seconds

Analysis on performance of grid-free compressive beamforming based on experiment (실험 기반 무격자 압축 빔형성 성능 분석)

  • Shin, Myoungin;Cho, Youngbin;Choo, Youngmin;Lee, Keunhwa;Hong, Jungpyo;Kim, Seongil;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.179-190
    • /
    • 2020
  • In this paper, we estimated the Direction of Arrival (DOA) using Conventional BeamForming (CBF), adaptive beamforming and compressive beamforming. Minimum Variance Distortionless Response (MVDR) and Multiple Signal Classification (MUSIC) are used as the adaptive beamforming, and grid-free compressive sensing is applied for the compressive sensing beamforming. Theoretical background and limitations of each technique are introduced, and the performance of each technique is compared through simulation and real experiments. The real experiments are conducted in the presence of reflected signal, transmitting a sound using two speakers and receiving acoustic data through a linear array consisting of eight microphones. Simulation and experimental results show that the adaptive beamforming and the grid-free compressive beamforming have a higher resolution than conventional beamforming when there are uncorrelated signals. On the other hand, the performance of the adaptive beamforming is degraded by the reflected signals whereas the grid-free compressive beamforming still improves the conventional beamforming resolution regardless of reflected signal presence.

A Study on the optimum covariance matrix to smart antenna (스마트 안테나에서 최적 공분산 행렬 연구)

  • Lee, Kwan Hyoung;Song, Woo Young;Joo, Jong Hyuk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.1
    • /
    • pp.83-88
    • /
    • 2009
  • This paper consider the problem of direction of arrival(DOA) estimation in the presence of multipath propagation. The sensor elements are assumed to be linear and uniformly spaced. Numerous authors have advocated the use of a beamforming preprocessor to facilitate application of high resolution direction finding algorithms The benefits cited include reduced computation, improved performance in environments that include spatially colored noise, and enhanced resolution. Performance benefits typically have been demonstrated via specific example. The purpose of this paper is to provide an analysis of a beamspace version of the MUSIC algorithm applicable to two closely spaced emitters in diverse scenarios. Specifically, the analysis is applicable to uncorrelated far field emitters of any relative power level, confined to a known plane, and observed by an arbitrary array of directional antenna. In this paper, we researched about optimize beam forming to smart antenna system. The covariance matrix obtained using fourth order cumulant function. Simulations illustrate the performance of the techniques.

Performance Characteristics of a 50-kHz Split-beam Data Acquisition and Processing System (50 kHz Split Beam 데이터 수록 및 처리 시스템의 성능특성)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.798-807
    • /
    • 2021
  • The directivity characteristics of acoustic transducers for conventional single-beam echo sounders considerably limit the detection of fish-size information in acoustic field surveys. To overcome this limitation, using the split-aperture technique to estimate the direction of arrival of single-echo signals from individual fish distributed within the sound beam represents the most reliable method for fish-size classification. For this purpose, we design and develop a split-beam data acquisition and processing system to obtain fish-size information in conjunction with a 50-kHz single-beam echo sounder. This split-beam data acquisition and processing system consists of a notebook PC, a field-programmable gate array board, an external single-transmitter module with a matching network, and four-channel receiver modules operating at a frequency of 50-kHz. The functionality of the developed split-beam data processor is tested and evaluated. Acoustic measurements in an experimental water tank showed that the developed data acquisition and processing system can be used as a fish-sizing echo sounder to estimate the size distribution of individual fish, although an external single-transmitter module with a matching network is required.

An ESPRIT-Based Super-Resolution Time Delay Estimation Algorithm for Real-Time Locating Systems (실시간 위치 추적 시스템을 위한 ESPRIT 기반의 초 분해능 지연 시간 추정 알고리즘)

  • Shin, Joon-Ho;Park, Hyung-Rae;Chang, Eun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.310-317
    • /
    • 2013
  • In this paper an ESPRIT-based super-resolution time delay estimation algorithm is developed for real-time locating system (RTLS) and its performance is analyzed in various multipath environments. The performance of the existing correlation method for time delay estimation seriously degrades in multipath environments where the relative time delays of multipath signals are less than a PN chip. To solve the problem we shall develop a frequency domain super-resolution time delay estimation algorithm using the ESPRIT, the most representative super-resolution direction-of-arrival (DOA) estimation algorithm, and analyze its performance in various multipath environments.

Two-Step Procedures for the Estimation of Two-Dimensional Distributed Sources (2차원 퍼진 신호를 추정하는 두단계 방법)

  • Lee, Seong-Ro;Song, Ikck-Ho;Lee, Joo-Shik;Park, Jeong-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.60-66
    • /
    • 1997
  • Most research on the estimation of direction of arrival has been accomplished based on the assumption that the signal sources are point sources. In some real surroundings, signal source localization can more adequately be accomplished with distributed source models. When the signal sources are distributed over an area, we cannot directly use well-known DOA estimation methods, In this paper, we represent an source by the center angle and degree of dispersion. Then, we address the estimation of the elevation and azimuth angles of distributed sources based on the parametric distributed source modeling in the 3-dimensional space.

  • PDF

RFID Based Mobile Robot Docking Using Estimated DOA (방향 측정 RFID를 이용한 로봇 이동 시스템)

  • Kim, Myungsik;Kim, Kwangsoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.802-810
    • /
    • 2012
  • This paper describes RFID(Radio Frequency Identification) based target acquisition and docking system. RFID is non-contact identification system, which can send relatively large amount of information using RF signal. Robot employing RFID reader can identify neighboring tag attached objects without any other sensing or supporting systems such as vision sensor. However, the current RFID does not provide spatial information of the identified object, the target docking problem remains in order to execute a task in a real environment. For the problem, the direction sensing RFID reader is developed using a dual-directional antenna. The dual-directional antenna is an antenna set, which is composed of perpendicularly positioned two identical directional antennas. By comparing the received signal strength in each antenna, the robot can know the DOA (Direction of Arrival) of transmitted RF signal. In practice, the DOA estimation poses a significant technical challenge, since the RF signal is easily distorted by the surrounded environmental conditions. Therefore, the robot loses its way to the target in an electromagnetically disturbed environment. For the problem, the g-filter based error correction algorithm is developed in this paper. The algorithm reduces the error using the difference of variances between current estimated and the previously filtered directions. The simulation and experiment results clearly demonstrate that the robot equipped with the developed system can successfully dock to a target tag in obstacles-cluttered environment.

Determination of Parameter Value in Constraint of Sparse Spectrum Fitting DOA Estimation Algorithm (희소성 스펙트럼 피팅 도래각 추정 알고리즘의 제한조건에 포함된 상수 결정법)

  • Cho, Yunseung;Paik, Ji-Woong;Lee, Joon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.917-920
    • /
    • 2016
  • SpSF algorithm is direction-of-arrival estimation algorithm based on sparse representation of incident signlas. Cost function to be optimized for DOA estimation is multi-dimensional nonlinear function, which is hard to handle for optimization. After some manipulation, the problem can be cast into convex optimiztion problem. Convex optimization problem tuns out to be constrained optimization problem, where the parameter in the constraint has to be determined. The solution of the convex optimization problem is dependent on the specific parameter value in the constraint. In this paper, we propose a rule-of-thumb for determining the parameter value in the constraint. Based on the fact that the noise in the array elements is complex Gaussian distributed with zero mean, the average of the Frobenius norm of the matrix in the constraint can be rigorously derived. The parameter in the constrint is set to be two times the average of the Frobenius norm of the matrix in the constraint. It is shown that the SpSF algorithm actually works with the parameter value set by the method proposed in this paper.

Decoupled Location Parameter Estimation of 3-D Near-Field Sources in a Uniform Circular Array using the Rank Reduction Algorithm

  • Jung, Tae-Jin;Kwon, Bum-Soo;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.129-135
    • /
    • 2011
  • An algorithm is presented for estimating the 3-D location (i.e., azimuth angle, elevation angle, and range) of multiple sources with a uniform circular array (UCA) consisting of an even number of sensors. Recently the rank reduction (RARE) algorithm for partly-calibrated sensor arrays was developed. This algorithm is applicable to sensor arrays consisting of several identically oriented and calibrated linear subarrays. Assuming that a UCA consists of M sensors, it can be divided into M/2 identical linear subarrays composed of two facing sensors. Based on the structure of the subarrays, the steering vectors are decomposed into two parts: range-independent 2-D direction-of-arrival (DOA) parameters, and range-relevant 3-D location parameters. Using this property we can estimate range-independent 2-D DOAs by using the RARE algorithm. Once the 2-D DOAs are available, range estimation can be obtained for each source by defining the 1-D MUSIC spectrum. Despite its low computational complexity, the proposed algorithm can provide an estimation performance almost comparable to that of the 3-D MUSIC benchmark estimator.

A Study on Desired Signal Estimation in Correlation Signal of Array Antennas (배열 안테나의 상관성 신호에서 원하는 신호 추정 방법에 대한 연구)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.275-280
    • /
    • 2015
  • In this paper, we studied for modified MUSIC algorithm of direction of arrival (DOA)estimation. Modified MUSIC algorithm search optimal covariance matrix using singular value decomposition and Bayes method, and desired signals are estimated by updating weight. In order to estimation of desired signals, we used sub spatial method of MUSIC algorithm. General MUSIC algorithm can estimate a desired signal in case of non-correlation signal. But, general MUSIC algorithm in case of correlation signal can not estimate a desired signals and resolution is decreased. Though simulation in case of correlation signal, we analyze to compare proposed MUSIC algorithm with general MUSIC algorithm.

Adaptive Antenna Array for DOA Estimation Utilizing Orthogonal Weight Searching (직교가중치 탐색방법을 이용한 도착방향 추정 적응어레이 안테나)

  • 오정호;최승원;이현배;황영준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.116-125
    • /
    • 1997
  • This paper presents a novel method, entitled Orthogonal Weights Searching(OWS), for the Direction-Of-Arrival(DOA) estimation. Utilizing the modified Conjugate Gradient Method(MCGM), the weight vector which is orthogonal to the signal subspace is directly computed from the signal matrix. The proposed method does not require the computation of the eigenvalues and eigenvectors. In addition, the new technique excludes the procedure for the detection of the number of signals under the assumption that the number of weights in the array is greater than the number of input signals. Since the proposed technique can be performed independently of the detection procedure, it shows a good performance in adverse signal environments in which the detection of the number of array inputs cannot be obtained successfully. The performance of the proposed technique is compared with that of the convectional eigen-decomposition method in terms of angle resolution for a given signal-to-noise ratio(SNR) and a required amount of computations.

  • PDF