Abstract
An algorithm is presented for estimating the 3-D location (i.e., azimuth angle, elevation angle, and range) of multiple sources with a uniform circular array (UCA) consisting of an even number of sensors. Recently the rank reduction (RARE) algorithm for partly-calibrated sensor arrays was developed. This algorithm is applicable to sensor arrays consisting of several identically oriented and calibrated linear subarrays. Assuming that a UCA consists of M sensors, it can be divided into M/2 identical linear subarrays composed of two facing sensors. Based on the structure of the subarrays, the steering vectors are decomposed into two parts: range-independent 2-D direction-of-arrival (DOA) parameters, and range-relevant 3-D location parameters. Using this property we can estimate range-independent 2-D DOAs by using the RARE algorithm. Once the 2-D DOAs are available, range estimation can be obtained for each source by defining the 1-D MUSIC spectrum. Despite its low computational complexity, the proposed algorithm can provide an estimation performance almost comparable to that of the 3-D MUSIC benchmark estimator.