DOI QR코드

DOI QR Code

Analysis on performance of grid-free compressive beamforming based on experiment

실험 기반 무격자 압축 빔형성 성능 분석

  • 신명인 (세종대학교 국방시스템공학과) ;
  • 조영빈 (상지이앤씨(주)) ;
  • 추영민 (세종대학교 국방시스템공학과) ;
  • 이근화 (세종대학교 국방시스템공학과) ;
  • 홍정표 (국방과학연구소 해양과학기술원) ;
  • 김성일 (국방과학연구소 해양과학기술원) ;
  • 홍우영 (세종대학교 국방시스템공학과)
  • Received : 2020.03.06
  • Accepted : 2020.05.07
  • Published : 2020.05.31

Abstract

In this paper, we estimated the Direction of Arrival (DOA) using Conventional BeamForming (CBF), adaptive beamforming and compressive beamforming. Minimum Variance Distortionless Response (MVDR) and Multiple Signal Classification (MUSIC) are used as the adaptive beamforming, and grid-free compressive sensing is applied for the compressive sensing beamforming. Theoretical background and limitations of each technique are introduced, and the performance of each technique is compared through simulation and real experiments. The real experiments are conducted in the presence of reflected signal, transmitting a sound using two speakers and receiving acoustic data through a linear array consisting of eight microphones. Simulation and experimental results show that the adaptive beamforming and the grid-free compressive beamforming have a higher resolution than conventional beamforming when there are uncorrelated signals. On the other hand, the performance of the adaptive beamforming is degraded by the reflected signals whereas the grid-free compressive beamforming still improves the conventional beamforming resolution regardless of reflected signal presence.

본 논문에서는 일반 빔형성, 적응 빔형성, 압축센싱을 이용하여 도래각을 추정한다. 이때, 적응 빔형성으로 Minimum Variance Distortionless Response(MVDR)과 Multiple Signal Classification(MUSIC)을 사용하였고, 압축 빔형성(compressive sensing beamforming)을 위해 무격자 압축센싱(grid-free compressive sensing)을 적용하였다. 앞서 언급한 각 기법들의 이론적 배경 및 한계점을 소개하고 모의실험 및 실제 실험을 통해 각 기법의 성능을 비교하였다. 실제 실험은 반사 신호가 존재하는 환경에서 수행하였으며, 2대의 스피커를 통해 음원을 송신하고 8대의 마이크로폰을 사용한 선배열을 통해 데이터를 수신하였다. 모의실험 및 실제 실험 결과를 통해 상관신호가 존재하지 않을 때, 적응 빔형성과 무격자 압축 빔형성이 일반 빔형성보다 고해상도의 결과를 보임을 확인하였다. 반면, 반사 신호가 존재하는 환경에서 적응 빔형성의 성능이 저하되지만, 무격자 압축 빔형성의 경우 반사 신호의 영향을 받지 않고 일반 빔형성의 분해능이 개선됨을 확인하였다.

Keywords

References

  1. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics (Springer, New York, 2011), Chap. 10.
  2. D. H. Johnson, "The application of spectral estimation methods to bearing estimation problems," Proc. IEEE, 70, 1018-1028 (1982). https://doi.org/10.1109/PROC.1982.12430
  3. S. A. Vorobyov, "Principles of minimum variance robust adaptive beamforming design," Signal Processing, 93, 3264-3277 (2013). https://doi.org/10.1016/j.sigpro.2012.10.021
  4. R. O. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE. Trans. Antennas Propagation. 34, 276-280 (1986). https://doi.org/10.1109/TAP.1986.1143830
  5. I. S. Reed, J. D. Mallett, and L. E. Brennen, "Rapid convergence rate in adaptive arrays," IEEE. Trans. On AES-10, 853-863 (1974).
  6. T. Shan and T. Kailath, "Adaptive beamforming for coherent signals and interference," IEEE. Trans. On ASSP. 33, 527-536 (1985).
  7. S. U. Pillai and B. H. Kwon, "Forward/backward spatial smoothing techniques for coherent signal identification," IEEE. Trans. Acoust. 37, 8-15 (1989) https://doi.org/10.1109/29.17496
  8. B. D. Carlson, "Covariance matrix estimation errors and diagonal loading in adaptive arrays," IEEE Trans. Aero. Electron. Sys. 24, 397-401 (1988). https://doi.org/10.1109/7.7181
  9. D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, 52, 1289-1306 (2006). https://doi.org/10.1109/TIT.2006.871582
  10. M. Lustig, D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magn. Reson. Med. 58, 1182-1195 (2007). https://doi.org/10.1002/mrm.21391
  11. M. A. Herman and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Trans. Signal Process. 57, 2275-2284 (2009). https://doi.org/10.1109/TSP.2009.2014277
  12. A. Xenaki, P. Gerstoft, and K. Mosegaard, "Compressive beamforming," J. Acoust. Soc. Am. 136, 260-271 (2014). https://doi.org/10.1121/1.4883360
  13. K. L. Gemba, W. S. Hodgkiss, and P. Gerstoft, "Adaptive and compressive matched field processing," J. Acoust. Soc. Am. 141 (2017).
  14. P. Gerstoft, C. F. Mechlenbrauker, W. Seong, and M. Bianco, "Introdunction to compressive sensing in acoustics," J. Acoust. Soc. Am. 143, 3731 (2018). https://doi.org/10.1121/1.5043089
  15. M. Bianco and P. Gerstoft, "Compressive acoustic sound speed profile estimation," J. Acoust. Soc. Am. 139, EL90-EL94 (2016). https://doi.org/10.1121/1.4943784
  16. P. Gerstoft, "Multiple and single snapshot compressive beamforming," J. Acoust. Soc. Am. 138, 2003 (2015). https://doi.org/10.1121/1.4929941
  17. C. Yardim, P. Gerstoft, W. Hodgkiss, and J. Traer, "Compressive geoacoustic inversion," J. Acoust. Soc. Am. 135, 1245-1255 (2014). https://doi.org/10.1121/1.4864792
  18. Y. Park, W. Seong, and Y. Choo, "Compressive time delay estimation off the grid," J. Acoust. Soc. Am. 141, EL585-EL591 (2017). https://doi.org/10.1121/1.4985612
  19. Y. Choo and W. Seong, "Compressive sound speed profile inversion using beamforming results," Remote. Sens. 10, 704 (2018). https://doi.org/10.3390/rs10050704
  20. E. J. Candles, J. Romberg, and T. Tao, "Robust uncertainty princiles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, 52, 489-509 (2006). https://doi.org/10.1109/TIT.2005.862083
  21. E. J. Candles and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies," IEEE Trans. Inf. Theory, 52, 5406-5425 (2006). https://doi.org/10.1109/TIT.2006.885507
  22. V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, "The convex geometry of linear inverse problems," Found. Comput. Math. 12, 805-849 (2012). https://doi.org/10.1007/s10208-012-9135-7
  23. E. J. Candes and C. Fernandez-Granda, "Towards a mathematical theory of super-resolution," Comm. Pure. Appl. Math, 67, 906-956 (2012). https://doi.org/10.1002/cpa.21455
  24. A. Xenaki and P. Gerstoft, "Grid-free compressive beamforming," J. Acoust. Soc. Am. 137, 1923-1935 (2015). https://doi.org/10.1121/1.4916269
  25. Y. Choo, J. Park, Y. Park, M. Park, and W. Seong, "Grid-free channel estimation of acoustic measurement data from SAVEX15," J. Acoust. Soc. Am. 140, 3055 (2016).
  26. Y. Park, Y. Choo, and W. Seong, "Off-the-grid direction-of-arrival estimation with multiple measurement vectors," J. Acoust. Soc. Am. 142, 2728-2728 (2018).
  27. G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, "Compressed sensing off the grid," IEEE Trans. Inf. Theory, 59, 7465-7490 (2013). https://doi.org/10.1109/TIT.2013.2277451
  28. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge Univ. Press, New York, 2004), pp.215-231.
  29. CVX: Matlab Software for Disciplined Convex Programming, http://cvxr.com/cvx/, (Last viewed March 5, 2020).
  30. Y. Cho, Analysis on performance of various beamforming schemes using experimental data (in Korean), (Master thesis, Sejong University, 2019).