• Title/Summary/Keyword: direction calibration

Search Result 168, Processing Time 0.031 seconds

3D View Controlling by Using Eye Gaze Tracking in First Person Shooting Game (1 인칭 슈팅 게임에서 눈동자 시선 추적에 의한 3차원 화면 조정)

  • Lee, Eui-Chul;Cho, Yong-Joo;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1293-1305
    • /
    • 2005
  • In this paper, we propose the method of manipulating the gaze direction of 3D FPS game's character by using eye gaze detection from the successive images captured by USB camera, which is attached beneath HMD. The proposed method is composed of 3 parts. In the first fart, we detect user's pupil center by real-time image processing algorithm from the successive input images. In the second part of calibration, the geometric relationship is determined between the monitor gazing position and the detected eye position gazing at the monitor position. In the last fart, the final gaze position on the HMB monitor is tracked and the 3D view in game is control]ed by the gaze position based on the calibration information. Experimental results show that our method can be used for the handicapped game player who cannot use his (or her) hand. Also, it can increase the interest and immersion by synchronizing the gaze direction of game player and that of game character.

  • PDF

An Experimental Study on Installation Effects of Pipe Elbow on the Electromagnetic Flowmeter Characteristics (Turbulent Flow) (곡관의 하류에 설치된 전자기유량계의 유량신호 특성에 관한 실험적 연구(난류 유동))

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1613-1621
    • /
    • 2002
  • An electromagnetic flowmeter(EMF) essentially averages the velocity distribution over the pipe cross- sectional area, and the measured value is dependent on the velocity profiles. In this study, installation effects of 90$^{\circ}$long elbow(KS B 1522, ISO 3419) on the EMF characteristics was investigated. A commercial EMF was adopted and the distribution of magnetic field in the electrodes cross section was measured. In the experiment, the national flow standard system, of which measurement uncertainty was evaluated in accordance with ISO 17025 recommendation, was used fur characterization of EMF. The leading line has 150D long straight pipe to established a fully developed flow before entering into the elbow and the elbow was installed downstream of it. then the flowmeter was tested within 50 D from the elbow. The installation effects of the flowmeter were investigated by varying the mean velocity(Reynolds No.)in pipe section, the locations and the direction of electrodes plane.($\phi$) From the experimental results, we find the optimal conditions to get most accurate measurements. Generally, the deviations from the calibration value were less than 0.5 % in farther than 10D distance from the elbow and the direction of electrode plane. $\phi$ = 90$^{\circ}$yielded the smallest measurement deviation. These characteristics were shown consistently in turbulent region regardless of the mean Reynolds number.

Analysis on the Measurement Results of the Focus Motor Position in MSC (Multi-Spectral Camera) on KOMPSAT - II

  • Heo, H.P.;Kong, J.P.;Kim, Y.S.;Park, J.E.;Chang, Y.J.;Lee, S.H.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.372-375
    • /
    • 2006
  • The MSC is a high resolution multi-spectral camera system which is mounted on the KOMPSAT-II satellite. The electro-optic camera system has a refocusing mechanism which can be used in-orbit by ground commands. By adjusting locations of some elements in optics, the system can be focused precisely. The focus mechanism in MSC is implemented with stepper motor and potentiometer. By reading the value of the potentiometer, rough position of the motor can be understood. The exact location of the motor can not be acquired because the information from the potentiometer can not be so accurate. However, before and after certain events of the satellite, like a satellite launch, the direction of the movement or order of the magnitude of the movement can be understood. In this paper, the trend analysis of the focus motor position during the ground test phase is introduced. This result can be used as basic information for the focus calibration after launch. By studying the long term trend, deviation from the best focal point can be understood. The positions of the focus motors after launch are also compared.

  • PDF

Comparison of Calibration Models for GPS Antenna Phase Center Variations (GPS 안테나 위상중심변동 보정모델 비교)

  • Park, Kwan-Dong;Won, Ji-Hye
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.4
    • /
    • pp.319-326
    • /
    • 2006
  • To get the highly-accurate and precise position of a GPS receiver, they should consider the state-of-the-art GPS force and measurement models. Especially, the phase center variations (PCV) of a GPS antenna can cause several centimeters of positioning errors in the vertical direction. In this study, we implemented four different models of PCV and evaluated their impact on the computed coordinates. The test data were taken from the 14 National Geography Information Institute permanent GPS stations and 30 Minisry of Government Administration and Home Affairs sites. For different combinations of calibration methods, an average of 1.3-2.6cm of height difference was observed. Also, we found a maximum error of ${\sim}4mm$ in the estimates of the precipitable water vapors.

Fish-eye camera calibration and artificial landmarks detection for the self-charging of a mobile robot (이동로봇의 자동충전을 위한 어안렌즈 카메라의 보정 및 인공표지의 검출)

  • Kwon, Oh-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.278-285
    • /
    • 2005
  • This paper describes techniques of camera calibration and artificial landmarks detection for the automatic charging of a mobile robot, equipped with a fish-eye camera in the direction of its operation for movement or surveillance purposes. For its identification from the surrounding environments, three landmarks employed with infrared LEDs, were installed at the charging station. When the robot reaches a certain point, a signal is sent to the LEDs for activation, which allows the robot to easily detect the landmarks using its vision camera. To eliminate the effects of the outside light interference during the process, a difference image was generated by comparing the two images taken when the LEDs are on and off respectively. A fish-eye lens was used for the vision camera of the robot but the wide-angle lens resulted in a significant image distortion. The radial lens distortion was corrected after linear perspective projection transformation based on the pin-hole model. In the experiment, the designed system showed sensing accuracy of ${\pm}10$ mm in position and ${\pm}1^{\circ}$ in orientation at the distance of 550 mm.

패턴 인식기법을 이용한 유출모형의 매개변수 최적화

  • 정창삼;허준행
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05b
    • /
    • pp.1316-1321
    • /
    • 2002
  • 일반적으로 강우-유출모형은 lumped model과 distributed model로 크게 구분될 수 있으며, 우리나라에서는 이중 비교적 부족한 자료를 이용하여도 개략적 모의가 가능한 전자를 널리 사용하고 있다. 본 연구에서는 이러한 모형들의 매개변수를 보정하는 방법에 관해 연구하였다. 일반적으로 모형의 보정 방법에는 크게 시행오차에 의한 수동보정(manual calibration) 방법과 최적화 기법에 의한 자동보정(automatic calibration) 방법으로 나눌 수 있다. 수동보정 방법은 모형 수행결과를 수문곡선의 시각적 비교에 의해 관측치와 비교하여 모형 운영자의 주관적인 판단하에 조정하는 기법이며, 자동보정 방법은 최적화 기법을 이용8하여 특정한 산정기준(estimation criteria)을 최대 또는 최소화시켜 모형의 매개변수를 결정하는 방법이다. 이러한 최적화기법은 일반적으로 직접탐색법과 경사법으로 구분할 수 있다. 경사법은 수렴속도가 빠르지만 편미분에 의해 방향을 찾아가는 방법으로 편도함수가 필요하므로 수문모형에는 적용하기가 힘들므로 적합하지 않다. 그러나, 보다 많은 컴퓨터 수행시간을 필요로 하는 직접탐색법의 경우 수렴속도는 느리지만, 편도함수를 필요치 않으므로 수문모형의 최적화 기법으로 적합하다고 할 수 있다. 직접탐색법에는 simplex-search 법, 패턴인식(pattern-search)법, rotating-direction 법, brent 법 등이 있으며, 본 연구에서는 직접탐색법의 일종인 패턴인식(pattern -search)법을 이용하여 매개변수 최적화 과정을 모의하였다. 이러한 매개변수 보정모형을 구성한 후 이를 가장 보편적으로 사용되고 있는 유출모형인 각종 단위도법들을 결합하는 모형을 구성하였다. 또한 구성된 모형을 시범유역에 적용하여 나온 결과를 HEC-1에서 적용되고 있는 단일변량 증감법과 같은 최적화 기법을 이용한 결과와 비교·분석을 실시하였다. 본 모형을 활용하여 강우-유출 모형의 매개변수를 지속적으로 산정하고 일반화할 경우 임의의 유역의 수문기상학적 특성에 부합한 매개변수를 정량화 시킬 수 있었다.

  • PDF

Efficiency calibration and coincidence summing correction for a NaI(Tl) spherical detector

  • Noureddine, Salam F.;Abbas, Mahmoud I.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3421-3430
    • /
    • 2021
  • Spherical NaI(Tl) detectors are used in gamma-ray spectrometry, where the gamma emissions come from the nuclei with energies in the range from a few keV up to 10 MeV. A spherical detector is aimed to give a good response to photons, which depends on their direction of travel concerning the detector center. Some distortions in the response of a gamma-ray detector with a different geometry can occur because of the non-uniform position of the source from the detector surface. The present work describes the calibration of a NaI(Tl) spherical detector using both an experimental technique and a numerical simulation method (NSM). The NSM is based on an efficiency transfer method (ETM, calculating the effective solid angle, the total efficiency, and the full-energy peak efficiency). Besides, there is a high probability for a source-to-detector distance less than 15 cm to have pulse coincidence summing (CS), which may occur when two successive photons of different energies from the same source are detected within a very short response time. Therefore, γ-γ ray CS factors are calculated numerically for a 152Eu radioactive cylindrical source. The CS factors obtained are applied to correct the measured efficiency values for the radioactive volumetric source at different energies. The results show a good agreement between the NSM and the experimental values (after correction with the CS factors).

Robust pupil detection and gaze tracking under occlusion of eyes

  • Lee, Gyung-Ju;Kim, Jin-Suh;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.11-19
    • /
    • 2016
  • The size of a display is large, The form becoming various of that do not apply to previous methods of gaze tracking and if setup gaze-track-camera above display, can solve the problem of size or height of display. However, This method can not use of infrared illumination information of reflected cornea using previous methods. In this paper, Robust pupil detecting method for eye's occlusion, corner point of inner eye and center of pupil, and using the face pose information proposes a method for calculating the simply position of the gaze. In the proposed method, capture the frame for gaze tracking that according to position of person transform camera mode of wide or narrow angle. If detect the face exist in field of view(FOV) in wide mode of camera, transform narrow mode of camera calculating position of face. The frame captured in narrow mode of camera include gaze direction information of person in long distance. The method for calculating the gaze direction consist of face pose estimation and gaze direction calculating step. Face pose estimation is estimated by mapping between feature point of detected face and 3D model. To calculate gaze direction the first, perform ellipse detect using splitting from iris edge information of pupil and if occlusion of pupil, estimate position of pupil with deformable template. Then using center of pupil and corner point of inner eye, face pose information calculate gaze position at display. In the experiment, proposed gaze tracking algorithm in this paper solve the constraints that form of a display, to calculate effectively gaze direction of person in the long distance using single camera, demonstrate in experiments by distance.

Performance Analysis of Direction Finding Systems Using EM Simulation-based Array Manifolds (EM 시뮬레이션 기반의 어레이 매니폴드를 이용한 방향 탐지 시스템 성능 분석)

  • Kim, Jae-Hwan;Cho, Chihyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1166-1172
    • /
    • 2012
  • In this paper, by using a commercial EM simulator, we could obtain the array manifold which are phase responses of an array antenna for the incident plane wave and then verified the effectiveness of methodology after comparing with the measurement. The result shows that the array manifold can be calculated including not only the phase response of the ideal point sources but also the influences of the mutual coupling between antennas and the installed platform. Also it can exclude the interference of strong broadcasting signal and the disturbance of the multipath in the calibration process. Finally, to predict the performances of direction finding systems, a novel method using both the EM simulation-based receiving signal and the sparsely sampled array manifold with the parabolic estimation is proposed. This method can be utilized in the various fields of direction-finding since it shows the superior predictive performance even in low SNR conditions.

Automatic Target Recognition for Camera Calibration (카메라 캘리브레이션을 위한 자동 타겟 인식)

  • Kim, Eui Myoung;Kwon, Sang Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.525-534
    • /
    • 2018
  • Camera calibration is the process of determining the parameters such as the focal length of a camera, the position of a principal point, and lens distortions. For this purpose, images of checkerboard have been mainly used. When targets were automatically recognized in checkerboard image, the existing studies had limitations in that the user should have a good understanding of the input parameters for recognizing the target or that all checkerboard should appear in the image. In this study, a methodology for automatic target recognition was proposed. In this method, even if only a part of the checkerboard image was captured using rectangles including eight blobs, four each at the central portion and the outer portion of the checkerboard, the index of the target can be automatically assigned. In addition, there is no need for input parameters. In this study, three conditions were used to automatically extract the center point of the checkerboard target: the distortion of black and white pattern, the frequency of edge change, and the ratio of black and white pixels. Also, the direction and numbering of the checkerboard targets were made with blobs. Through experiments on two types of checkerboards, it was possible to automatically recognize checkerboard targets within a minute for 36 images.