• Title/Summary/Keyword: directed migration

Search Result 19, Processing Time 0.029 seconds

A Study on the Place Name of Migration in Three Northeast Provinces of China I : Case of the Yanbian Korean Autonomous Prefecture (중국 동북 3성의 이식지명에 관한 연구 I - 연변 조선족 자치주를 사례로 -)

  • Kim, Nam-Sin;Jin, Shizhu
    • Journal of the Korean association of regional geographers
    • /
    • v.20 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • This Research is to study types and distribution for place name of migration derived from Korea Peninsula by analyzing villages name of the Yanbian Korean Autonomous Prefecture. Village names of Yanbian Korean were identified as 945 out of 2,015. Place name migrated from Korea Peninsula was turned out 51 villages. Up to the present time in the Transition of China, 34 place names were disappeared, maintained place names were 16, and rehabilitated place name after loss was 1. The place name by naming method were classified as small area directed migration, large area directed migration, and merged migration. In case of small area directed migration, origin and destination is same such as Jeongeup and Muju, Cheonbuk, large area directed migration is named case by region migrants like a Gangwonchon named by people moved from GanwonDo, and merged case combine initials with each village names in case of GilseongChon by colligated Gilju and Seokseongmyeon. The results will be expected to support research information for identity and ethnical migration process.

  • PDF

Involvement of PI3K and MMP1 in PDGF-induced Migration of Human Adipose-derived Stem Cells

  • Lim, Yoonhwa;Lee, Minji;Jeong, Hyeju;Kim, Haekwon
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.167-180
    • /
    • 2017
  • Human adult stem cells have widely been examined for their clinical application including their wound healing effect in vivo. To function as therapeutic cells, however, cells must represent the ability of directed migration in response to signals. This study aimed to investigate the mechanism of platelet-derived growth factor (PDGF)-induced migration of the human abdominal adipose-derived stem cells (hADSCs) in vitro. A general matrix metalloproteinase (MMP) inhibitor or a MMP2 inhibitor significantly inhibited the PDGF-induced migration. PDGF treatment exhibited greater mRNA level and denser protein level of MMP1. The conditioned medium of PDGF-treated cells showed a caseinolytic activity of MMP1. Transfection of cells with siRNA against MMP1 significantly inhibited MMP1 expression, its caseinolytic activity, and cell migration following PDGF treatment. Phosphatidylinositol 3-kinase (PI3K) inhibitor reduced the migration by about 50% without affecting ERK and MLC proteins. Rho-associated protein kinase inhibitor mostly abolished the migration and MLC proteins. The results suggest that PDGF might signal hADSCs through PI3K, and MMP1 activity could play an important role in this PDGF-induced migration in vitro.

CBP7 Interferes with the Multicellular Development of Dictyostelium Cells by Inhibiting Chemoattractant-Mediated Cell Aggregation

  • Park, Byeonggyu;Shin, Dong-Yeop;Jeon, Taeck Joong
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.103-109
    • /
    • 2018
  • Calcium ions are involved in the regulation of diverse cellular processes. Fourteen genes encoding calcium binding proteins have been identified in Dictyostelium. CBP7, one of the 14 CBPs, is composed of 169 amino acids and contains four EF-hand motifs. Here, we investigated the roles of CBP7 in the development and cell migration of Dictyostelium cells and found that high levels of CBP7 exerted a negative effect on cells aggregation during development, possibly by inhibiting chemoattractant-directed cell migration. While cells lacking CBP7 exhibited normal development and chemotaxis similar that of wild-type cells, CBP7 overexpressing cells completely lost their chemotactic abilities to move toward increasing cAMP concentrations. This resulted in inhibition of cellular aggregation, a process required for forming multicellular organisms during development. Low levels of cytosolic free calcium were observed in CBP7 overexpressing cells, which was likely the underlying cause of their lack of chemotaxis. Our results demonstrate that CBP7 plays an important role in cell spreading and cell-substrate adhesion. cbp7 null cells showed decreased cell size and cell-substrate adhesion. The present study contributes to further understanding the role of calcium signaling in regulation of cell migration and development.

The Relationships between the Methods of the Epidural Catheter Fixation and the Postoperative Position Change of the Catheter (경막외 카테터의 고정방법과 수술후 카테터의 위치 변화와의 관계)

  • Shin, Woo-Jong;Yeom, Jong-Hoon;Kim, Hee-Soo;Kim, Yong-Chul;Lee, Dong-Ho;Kim, Kyung-Hun;Shim, Jae-Choi;Hwang, Jung-Hye
    • The Korean Journal of Pain
    • /
    • v.10 no.1
    • /
    • pp.64-68
    • /
    • 1997
  • Background : Patients mover more as their post operative pain decrease. With the increase in movement there will be a tendency for the epidural catheter to migrate out of its original position. We studied 2 methods of fixation of the epidural catheter and the changes in position as related to patient movement. Methods : Patients were divided into two groups. Patients in Group A had their epidural catheter formed with a circular loop at the (skin) exit site then directed over the right shoulder. Group B had the epidural catheter flxed with Fixomull on the exit site without forming a circular loop. At the end of the operation, 3 mg of epidural morphine was injected via indwelling epidural catheter for postoperative pain control. Epidural catheter depth was measured 24 hours later. Results : The overall rate of migration of epidural catheter was 61.9%. In Group A, number of patients whose catheter migrated over 0.5 cm was 23(69.9%) with 14 inward migration and 9 outward migration. Group B had 16(53%) patients catheters migrate over 0.5 cm, with 2 patients having inward migration and 14 outward migration. Conclusions : Although the rates of migration of epidural catheter were similar for both groups, the number of inner migration of catheter, which could result serious complications, was significantly lower in Group B than Group A. Based on our results we recommend the epidural catheter be fixed without a circular loop.

  • PDF

Visualization of mechanical stresses in expanding cell cluster (세포군집의 확장에 관여하는 물리적 힘의 가시화)

  • Cho, Youngbin;Gweon, Bomi;Ko, Ung Hyun;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • Collective cell migration is a fundamental phenomenon observed in various biological processes such as development, wound healing, and cancer metastasis. During the collective migration, cells undergo changes in their phenotypes from those of stable to the migratory state via the process called epithelial-mesenchymal transition (EMT). Recent findings in biology and biochemistry have shown that EMT is closely related to the cancer invasion or metastasis, but not much of the correlations in kinematics and physical forces between the neighboring cells are known yet. In this study, we aim to understand the cell migration and stress distribution within the expanding cell cluster. We constructed the in vitro cell cluster on the hydrogel, employed traction force microscopy (TFM) and monolayer stress microscopy (MSM) to visualize the physical forces within the expanding cell monolayer. During the expansion, cells at the cluster edge exhibited enhanced motility and developed focal adhesions that are the essential features of EMT while cells at the core of the cluster maintained the epithelial characteristics. In the aspect of mechanical stress, the cluster edge had the highest traction force of ~90 Pa directed toward the cluster core, which means that cells at the edge actively pull the substrate to make the cluster expansion. The cluster core of the tightly confined cells by neighboring cells had a lower traction force value (~60 Pa) but the highest intercellular normal stress of ~800 Pa because of the accumulation of traction from the edge of the monolayer.

Proliferative and Synthetic Responses of Airway Smooth Muscle in Asthma (천식에서 기도평활근의 증식과 합성 반응에 대한 최신지견)

  • Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.6
    • /
    • pp.580-587
    • /
    • 2005
  • New evidence is emerging that airway smooth muscle(ASM) may act as an immunomodulatory cell by providing pro-inflammatory cytokines and chemokines, polypeptide growth factors, extracellular matrix proteins, cell adhesion receptors and co-stimulatory molecules. ASM can promote the formation of the interstitial extracellular matrix, and potentially contribute to the alterations within the extracellular matrix in asthma. In addition, extracellular matrix components can alter the proliferative, survival, and cytoskeletal synthetic function of ASM cells through integrin-directed signaling. Increased ASM mass is one of the most important features of the airway wall remodeling process in asthma. Three different mechanisms may contribute to the increased ASM mass : cell proliferation, increased migration and decreased rate of apoptosis. The major signaling pathways of cell proliferation activated by ASM mitogens are those dependent on extracellular signal-regulated kinase and phosphoinositide 3'-kinase. The key signaling mechanisms of cell migration have been identified as the p38 mitogen-activated protein kinase and the p21-activated kinase 1 pathways. ASM cells contain ${\beta}2$-adrenergic receptors and glucocorticoid receptors. They may represent a key target for ${\beta}2$-adrenergic receptor agonist/corticosteroid interactions which have antiproliferative activity against a broad spectrum of mitogens.

Duplication with Task Assignment in Mesh Distributed System

  • Sharma, Rashmi;Nitin, Nitin
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.193-214
    • /
    • 2014
  • Load balancing is the major benefit of any distributed system. To facilitate this advantage, task duplication and migration methodologies are employed. As this paper deals with dependent tasks (DAG), we used duplication. Task duplication reduces the overall schedule length of DAG along-with load balancing. This paper proposes a new task duplication algorithm at the time of tasks assignment on various processors. With the intention of conducting proposed algorithm performance computation; simulation has been done on the Netbeans IDE. The mesh topology of a distributed system is simulated at this juncture. For task duplication, overall schedule length of DAG is the main parameter that decides the performance of a proposed duplication algorithm. After obtaining the results we compared our performance with arbitrary task assignment, CAWF and HEFT-TD algorithms. Additionally, we also compared the complexity of the proposed algorithm with the Duplication Based Bottom Up scheduling (DBUS) and Heterogeneous Earliest Finish Time with Task Duplication (HEFT-TD).

Phosphoinositides Signaling and Epithelial-to-Mesenchymal Transition: Putative Topic for Basic Toxicological Research

  • Lee, Chang-Ho
    • Toxicological Research
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Ptdlns(4,5)$P_2$ is a key cellular phosphoinositide that localizes in separate and distinctive pools in subcellular membrane and vesicular compartments. In membranes, Ptdlns(4,5)$P_2$ acts as a precursor to second messengers and is itself a main signaling and targeting molecule. Specific subcellular localization of type I PIP kinases directed by interacting with specific targeting module differentiates Ptdlns(4,5)$P_2$ production in a spatial and temporal manner. Several lines of evidences support the idea that Ptdlns(4,5)$P_2$ is generated in very specific pools in a spatial and temporal manner or by feeding Ptdlns(4,5)$P_2$ directly to effectors. In this concept, the interaction of PIPKI isoforms with a specific targeting module to allow precise subcellular targeting modulates highly specific Ptdlns(4,5)$P_2$ synthesis and channeling overall effectors. For instance, localization of PIPKI${\gamma}$661 to focal adhesions by an interaction with talin results in spatial and temporal production of Ptdlns(4,5)$P_2$, which regulates EGF-stimulated directional cell migration. In addition, Type $I{\gamma}$ PIPK is targeted to E-cadherin in cell adherence junction and plays a role in controlling dynamics of cell adherence junction and endocytosis of E-cadherin. Characterizing how PIP kinase isoforms are regulated by interactions with their targeting modules, as well as the mechanisms by which their product, Ptdlns(4,5)$P_2$, exerts its effects on cellular signaling processes, is crucial to understand the harmonized control of numerous cellular signaling pathways. Thus, in this review the roles of the Ptdlns(4)P(5) kinases and Ptdlns(4,5)$P_2$ were described and critically reviewed in terms of regulation of the E-cadherin trafficking, cell migration, and formation of cell adherence junction which is indispensable and is tightly controlled in epithelial-to-mesenchymal transition process.

Baicalein Inhibits Epithelial to Mesenchymal Transition via Downregulation of Cyr61 and LOXL-2 in MDA-MB231 Breast Cancer Cells

  • Nguyen, Linh Thi Thao;Song, Yeon Woo;Cho, Somi Kim
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.909-914
    • /
    • 2016
  • Epithelial-mesenchymal transition (EMT) is a critical step in the acquisition of the migratory and invasive capabilities associated with metastatic competence. Cysteine-rich protein 61 (CCN1/Cyr61) has been implicated as an important mediator in the proliferation and metastasis of breast cancer. Hence, Cyr61 and associated pathways are attractive targets for therapeutic interventions directed against the EMT. In the present study, we report that baicalein significantly inhibits the expression of Cyr61 and migration and invasion of MDA-MB231 human breast cancer cells. Exposure to baicalein led to increased E-cadherin expression, possibly due to the ubiquitination of Snail and Slug, which was mediated by the Cyr61/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. Further analysis revealed that baicalein inhibited the expression of lysyl oxidase like-2 (LOXL-2), which is a functional collaborator of Snail and Slug, and subsequently attenuated the direct interaction between LOXL-2 and Snail or Slug, thereby enhancing $GSK3{\beta}$-dependent Snail and Slug degradation. Our findings provide new insights into the antimetastatic mechanism of baicalein and may contribute to its beneficial use in breast cancer therapies.

In Vivo Expression of EphrinA5-Fc in Mice Results in Cephalic Neural Crest Agenesis and Craniofacial Abnormalities

  • Noh, Hyuna;Park, Eunjeong;Park, Soochul
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • Eph receptors and their ligands ephrins have been implicated in guiding the directed migration of neural crest cells (NCCs). In this study, we found that Wnt1-Cre-mediated expression of ephrinA5-Fc along the dorsal midline of the dien- and mesencephalon resulted in severe craniofacial malformation of mouse embryo. Interestingly, expression of cephalic NCC markers decreased significantly in the frontonasal process and branchial arches 1 and 2, which are target areas for the migratory cephalic NCCs originating in the dien- and mesencephalon. In addition, these craniofacial tissues were much smaller in mutant embryos expressing ephrinA5-Fc. Importantly, EphA7-positive cephalic NCCs were absent along the dorsal dien- and mesencephalon of mutant embryos expressing ephrinA5-Fc, suggesting that the generation of cephalic NCCs is disrupted due to ephrinA5-Fc expression. NCC explant experiments suggested that ephrinA5-Fc perturbed survival of cephalic NCC precursors in the dorsal midline tissue rather than affecting their migratory capacity, which was consistent with our previous report that expression of ephrinA5-Fc in the dorsal midline is responsible for severe neuroepithelial cell apoptotic death. Taken together, our findings strongly suggest that expression of ephrinA5-Fc decreases a population of cephalic NCC precursors in the dorsal midline of the dien- and mesencephalon, thereby disrupting craniofacial development in the mouse embryos.