DOI QR코드

DOI QR Code

Phosphoinositides Signaling and Epithelial-to-Mesenchymal Transition: Putative Topic for Basic Toxicological Research

  • Lee, Chang-Ho (Department of Pharmacology and Biomedical Science, College of Medicine, Hanyang University)
  • Published : 2008.03.31

Abstract

Ptdlns(4,5)$P_2$ is a key cellular phosphoinositide that localizes in separate and distinctive pools in subcellular membrane and vesicular compartments. In membranes, Ptdlns(4,5)$P_2$ acts as a precursor to second messengers and is itself a main signaling and targeting molecule. Specific subcellular localization of type I PIP kinases directed by interacting with specific targeting module differentiates Ptdlns(4,5)$P_2$ production in a spatial and temporal manner. Several lines of evidences support the idea that Ptdlns(4,5)$P_2$ is generated in very specific pools in a spatial and temporal manner or by feeding Ptdlns(4,5)$P_2$ directly to effectors. In this concept, the interaction of PIPKI isoforms with a specific targeting module to allow precise subcellular targeting modulates highly specific Ptdlns(4,5)$P_2$ synthesis and channeling overall effectors. For instance, localization of PIPKI${\gamma}$661 to focal adhesions by an interaction with talin results in spatial and temporal production of Ptdlns(4,5)$P_2$, which regulates EGF-stimulated directional cell migration. In addition, Type $I{\gamma}$ PIPK is targeted to E-cadherin in cell adherence junction and plays a role in controlling dynamics of cell adherence junction and endocytosis of E-cadherin. Characterizing how PIP kinase isoforms are regulated by interactions with their targeting modules, as well as the mechanisms by which their product, Ptdlns(4,5)$P_2$, exerts its effects on cellular signaling processes, is crucial to understand the harmonized control of numerous cellular signaling pathways. Thus, in this review the roles of the Ptdlns(4)P(5) kinases and Ptdlns(4,5)$P_2$ were described and critically reviewed in terms of regulation of the E-cadherin trafficking, cell migration, and formation of cell adherence junction which is indispensable and is tightly controlled in epithelial-to-mesenchymal transition process.

Keywords

References

  1. Aikawa, Y. and Martin, T.F. (2003). ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. J. Cell Biol., 162, 647-659 https://doi.org/10.1083/jcb.200212142
  2. Anastasiadis, P.Z. and Reynolds, A.B. (2000). The p120 catenin family: complex roles in adhesion, signaling and cancer. J. Cell Sci., 113, 1319-1334
  3. Aoyagi, K., Sugaya, T., Umeda, M., Yamamoto, S., Terakawa, S. and Takahashi, M. (2005). The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters. J. Biol. Chem., 280, 17346-17352 https://doi.org/10.1074/jbc.M413307200
  4. Arias, A.M. (2001). Epithelial mesenchymal interactions in cancer and development. Cell, 105, 425-431 https://doi.org/10.1016/S0092-8674(01)00365-8
  5. Becker, K.F., Rosivatz, E., Blechschmidt, K., Kremmer, E., Sarbia, M. and Hofler, H. (2007). Analysis of the E-cadherin repressor Snail in primary human cancers. Cells Tissues Organs, 185, 204-212 https://doi.org/10.1159/000101321
  6. Birchmeier, W. and Birchmeier, C. (1995). Epithelial-mesenchymal transitions in development and tumor progression. EXS, 74, 1-15
  7. Bonifacino, J.S. and Traub, L.M. (2003). Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem., 72, 395-447 https://doi.org/10.1146/annurev.biochem.72.121801.161800
  8. Boronenkov, I.V., Loijens, J.C., Umeda, M. and Anderson, R.A. (1998). Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell., 9, 3547-3560 https://doi.org/10.1091/mbc.9.12.3547
  9. Brett, T.J., Traub, L.M. and Fremont, D.H. (2002). Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure, 10, 797-809 https://doi.org/10.1016/S0969-2126(02)00784-0
  10. Brown, M.T., Andrade, J., Radhakrishna, H., Donaldson, J.G., Cooper, J.A. and Randazzo, P.A. (1998). ASAP1, a phospholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol. Cell. Biol., 18, 7038-7051 https://doi.org/10.1128/MCB.18.12.7038
  11. Bryant, D.M. and Stow, J.L. (2004). The ins and outs of Ecadherin trafficking. Trends Cell Biol., 14, 427-434 https://doi.org/10.1016/j.tcb.2004.07.007
  12. Cano, A., Perez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., del Barrio, M.G., Portillo, F. and Nieto, M.A. (2000). The transcription factor snail controls epithelialmesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol., 2, 76-83 https://doi.org/10.1038/35000025
  13. Carvell, M.J., Marsh, P.J., Persaud, S.J. and Jones, P.M. (2007). E-Cadherin interactions regulate beta-cell proliferation in islet-like structures. Cell Physiol. Biochem., 20, 617-626 https://doi.org/10.1159/000107545
  14. Charest, P.G. and Firtel, R.A. (2006). Feedback signaling controls leading-edge formation during chemotaxis. Curr. Opin. Genet. Dev., 16, 339-347 https://doi.org/10.1016/j.gde.2006.06.016
  15. Conacci-Sorrell, M., Zhurinsky, J. and Ben-Ze'ev, A. (2002). The cadherin-catenin adhesion system in signaling and cancer. J. Clin. Invest., 109, 987-991 https://doi.org/10.1172/JCI0215429
  16. Cremona, O. and De Camilli, P. (2001). Phosphoinositides in membrane traffic at the synapse. ., 114, 1041-1052
  17. D'Souza-Schorey, C. (2005). Disassembling adherens junctions: breaking up is hard to do. Trends Cell Biol., 15, 19-26 https://doi.org/10.1016/j.tcb.2004.11.002
  18. DesMarais, V., Ghosh, M., Eddy, R. and Condeelis, J. (2005). Cofilin takes the lead. J. Cell Sci., 118, 19-26 https://doi.org/10.1242/jcs.01631
  19. Di Paolo, G., Pellegrini, L., Letinic, K., Cestra, G., Zoncu, R., Voronov, S., Chang, S., Guo, J., Wenk, M.R. and De Camilli, P. (2002). Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. Nature, 420, 85-89 https://doi.org/10.1038/nature01147
  20. Divecha, N., Roefs, M., Halstead, J.R., D'Andrea, S., Fernandez-Borga, M., Oomen, L., Saqib, K.M., Wakelam, M.J. and D'Santos, C. (2000). Interaction of the type Ialpha PIPkinase with phospholipase D: a role for the local generation of phosphatidylinositol 4,5-bisphosphate in the regulation of PLD2 activity. EMBO J., 19, 5440-5449 https://doi.org/10.1093/emboj/19.20.5440
  21. Donaldson, J.G. and Jackson, C.L. (2000). Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol., 12, 475-482 https://doi.org/10.1016/S0955-0674(00)00119-8
  22. Doughman, R.L., Firestone, A.J., Wojtasiak, M.L., Bunce, M.W. and Anderson, R.A. (2003). Membrane ruffling requires coordination between type Ialpha phosphatidylinositol phosphate kinase and Rac signaling. J. Biol. Chem., 278, 23036-23045 https://doi.org/10.1074/jbc.M211397200
  23. Downes, C.P., Gray, A. and Lucocq, J.M. (2005). Probing phosphoinositide functions in signaling and membrane trafficking. Trends Cell Biol., 15, 259-268 https://doi.org/10.1016/j.tcb.2005.03.008
  24. Fawcett, J. and Pawson, T. (2000). Signal transduction. NWASP regulation--the sting in the tail. Science, 290, 725-726 https://doi.org/10.1126/science.290.5492.725
  25. Frame, M.C., Fincham, V.J., Carragher, N.O. and Wyke, J.A. (2002). v-Src's hold over actin and cell adhesions. Nat. Rev. Mol. Cell Biol., 3, 233-245 https://doi.org/10.1038/nrm779
  26. Frisch, S.M. (1997). The epithelial cell default-phenotype hypothesis and its implications for cancer. Bioessays, 19, 705-709 https://doi.org/10.1002/bies.950190811
  27. Gan, Y., McGraw, T.E. and Rodriguez-Boulan, E. (2002). The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nat. Cell Biol., 4, 605-609 https://doi.org/10.1038/ncb827
  28. Golub, T. and Caroni, P. (2005). PI(4,5)P2-dependent microdomain assemblies capture microtubules to promote and control leading edge motility. J. Cell Biol., 169, 151-165 https://doi.org/10.1083/jcb.200407058
  29. Gong, L.W., Di Paolo, G., Diaz, E., Cestra, G., Diaz, M.E., Lindau, M., De Camilli, P. and Toomre, D. (2005). Phosphatidylinositol phosphate kinase type I gamma regulates dynamics of large dense-core vesicle fusion. Proc. Natl. Acad. Sci. USA, 102, 5204-5209
  30. Gumbiner, B.M. (1996). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 84, 345-357 https://doi.org/10.1016/S0092-8674(00)81279-9
  31. Hajra, K.M., Chen, D.Y. and Fearon, E.R. (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer. Res., 62, 1613-1618
  32. Halbleib, J.M. and Nelson, W.J. (2006). Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev., 20, 3199-3214 https://doi.org/10.1101/gad.1486806
  33. Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science, 279, 509-514 https://doi.org/10.1126/science.279.5350.509
  34. Hanahan, D. and Weinberg, R.A. (2000). The hallmarks of cancer. Cell, 100, 57-70 https://doi.org/10.1016/S0092-8674(00)81683-9
  35. Hilgemann, D.W. and Ball, R. (1996). Regulation of cardiac Na$^{+}$, Ca$^{2+}$ exchange and KATP potassium channels by PIP2. Science, 273, 956-959 https://doi.org/10.1126/science.273.5277.956
  36. Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A.J., Frohman, M.A. and Kanaho, Y. (1999). Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell, 99, 521-532 https://doi.org/10.1016/S0092-8674(00)81540-8
  37. Honing, S., Ricotta, D., Krauss, M., Spate, K., Spolaore, B., Motley, A., Robinson, M., Robinson, C., Haucke, V. and Owen, D.J. (2005). Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell, 18, 519-531 https://doi.org/10.1016/j.molcel.2005.04.019
  38. Horwitz, A.R. and Parsons, J.T. (1999). Cell migration--movin' on. Science, 286, 1102-1103 https://doi.org/10.1126/science.286.5442.1102
  39. Hugo, H., Ackland, M.L., Blick, T., Lawrence, M.G., Clements, J.A., Williams, E.D. and Thompson, E.W. (2007). Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J. Cell Physiol., 213, 374-383 https://doi.org/10.1002/jcp.21223
  40. Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673-687 https://doi.org/10.1016/S0092-8674(02)00971-6
  41. Insall, R.H. and Weiner, O.D. (2001). PIP3, PIP2, and cell movement--similar messages, different meanings? Dev. Cell, 1, 743-747 https://doi.org/10.1016/S1534-5807(01)00086-7
  42. Ishihara, H., Shibasaki, Y., Kizuki, N., Katagiri, H., Yazaki, Y., Asano, T. and Oka, Y. (1996). Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J. Biol. Chem., 271, 23611-23614 https://doi.org/10.1074/jbc.271.39.23611
  43. Ishihara, H., Shibasaki, Y., Kizuki, N., Wada, T., Yazaki, Y., Asano, T. and Oka, Y. (1998). Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J. Biol. Chem., 273, 8741-8748 https://doi.org/10.1074/jbc.273.15.8741
  44. Itoh, T., Ijuin, T. and Takenawa, T. (1998). A novel phosphatidylinositol-5-phosphate 4-kinase (phosphatidylinositol-phosphate kinase IIgamma) is phosphorylated in the endoplasmic reticulum in response to mitogenic signals. J. Biol. Chem., 273, 20292-20299 https://doi.org/10.1074/jbc.273.32.20292
  45. Jamora, C. and Fuchs, E. (2002). Intercellular adhesion, signalling and the cytoskeleton. Nat. Cell Biol., 4, E101-108 https://doi.org/10.1038/ncb0402-e101
  46. Janetopoulos, C., Ma, L., Devreotes, P.N. and Iglesias, P.A. (2004). Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc. Natl. Acad. Sci. USA, 101, 8951-8956
  47. Jenkins, G.H., Fisette, P.L. and Anderson, R.A. (1994). Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J. Biol. Chem., 269, 11547-11554
  48. Jones, D.R., Sanjuan, M.A. and Merida, I. (2000). Type Ialpha phosphatidylinositol 4-phosphate 5-kinase is a putative target for increased intracellular phosphatidic acid. FEBS Lett., 476, 160-165 https://doi.org/10.1016/S0014-5793(00)01702-6
  49. Kam, J.L., Miura, K., Jackson, T.R., Gruschus, J., Roller, P., Stauffer, S., Clark, J., Aneja, R. and Randazzo, P.A. (2000). Phosphoinositide-dependent activation of the ADP-ribosylation factor GTPase-activating protein ASAP1. Evidence for the pleckstrin homology domain functioning as an allosteric site. J. Biol. Chem., 275, 9653-9663 https://doi.org/10.1074/jbc.275.13.9653
  50. Kirchhausen, T. (1999). Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol., 15, 705-732 https://doi.org/10.1146/annurev.cellbio.15.1.705
  51. Kisseleva, M., Feng, Y., Ward, M., Song, C., Anderson, R.A. and Longmore, G.D. (2005). The LIM protein Ajuba regulates phosphatidylinositol 4,5-bisphosphate levels in migrating cells through an interaction with and activation of PIPKI alpha. Mol. Cell Biol., 25, 3956-3966 https://doi.org/10.1128/MCB.25.10.3956-3966.2005
  52. Knust, E. (2000). Control of epithelial cell shape and polarity. Curr. Opin. Genet. Dev., 10, 471-475 https://doi.org/10.1016/S0959-437X(00)00115-5
  53. Kunz, J., Wilson, M.P., Kisseleva, M., Hurley, J.H., Majerus, P.W. and Anderson, R.A. (2000). The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol. Cell, 5, 1-11 https://doi.org/10.1016/S1097-2765(00)80398-6
  54. Lanier, L.M. and Gertler, F.B. (2000). Actin cytoskeleton: thinking globally, actin' locally. Curr. Biol., 10, R655-R657 https://doi.org/10.1016/S0960-9822(00)00685-0
  55. Le, T.L., Yap, A.S. and Stow, J.L. (1999). Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J. Cell Biol., 146, 219-232 https://doi.org/10.1083/jcb.146.1.219
  56. Ling, K., Bairstow, S.F., Carbonara, C., Turbin, D.A., Huntsman, D.G. and Anderson, R.A. (2007). Type Igamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. J. Cell Biol., 176, 343-353 https://doi.org/10.1083/jcb.200606023
  57. Ling, K., Doughman, R.L., Firestone, A.J., Bunce, M.W. and Anderson, R.A. (2002). Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature, 420, 89-93 https://doi.org/10.1038/nature01082
  58. Ling, K., Doughman, R.L., Iyer, V.V., Firestone, A.J., Bairstow, S.F., Mosher, D.F., Schaller, M.D. and Anderson, R.A. (2003). Tyrosine phosphorylation of type Igamma phosphatidylinositol phosphate kinase by Src regulates an integrin-talin switch. J. Cell Biol., 163, 1339-1349 https://doi.org/10.1083/jcb.200310067
  59. Ling, K., Schill, N.J., Wagoner, M.P., Sun, Y. and Anderson, R.A. (2006). Movin' on up: the role of PtdIns(4,5)P(2) in cell migration. Trends Cell Biol., 16, 276-284 https://doi.org/10.1016/j.tcb.2006.03.007
  60. Loijens, J.C. and Anderson, R.A. (1996). Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J. Biol. Chem., 271, 32937-32943 https://doi.org/10.1074/jbc.271.51.32937
  61. Martel, V., Racaud-Sultan, C., Dupe, S., Marie, C., Paulhe, F., Galmiche, A., Block, M.R. and Albiges-Rizo, C. (2001). Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem., 276, 21217-21227
  62. Martin, T.F. (2001). PI(4,5)P(2) regulation of surface membrane traffic. Curr. Opin. Cell Biol., 13, 493-499 https://doi.org/10.1016/S0955-0674(00)00241-6
  63. Moss, J. and Vaughan, M. (1998). Molecules in the ARF orbit. J. Biol. Chem., 273, 21431-21434 https://doi.org/10.1074/jbc.273.34.21431
  64. Moustakas, A. and Heldin, C.H. (2007). Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer. Sci., 98, 1512-1520 https://doi.org/10.1111/j.1349-7006.2007.00550.x
  65. Nelson, W.J. and Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 303, 1483-1487 https://doi.org/10.1126/science.1094291
  66. Niggli, V. (2005). Regulation of protein activities by phosphoinositide phosphates. Annu. Rev. Cell Dev. Biol., 21, 57- 79 https://doi.org/10.1146/annurev.cellbio.21.021704.102317
  67. Nobes, C.D. and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81, 53-62 https://doi.org/10.1016/0092-8674(95)90370-4
  68. Oloumi, A., McPhee, T. and Dedhar, S. (2004). Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim. Biophys. Acta., 1691, 1-15 https://doi.org/10.1016/j.bbamcr.2003.12.002
  69. Oude Weernink, P.A., Schmidt, M. and Jakobs, K.H. (2004). Regulation and cellular roles of phosphoinositide 5-kinases. Eur. J. Pharmacol., 500, 87-99 https://doi.org/10.1016/j.ejphar.2004.07.014
  70. Parker, P.J. (1995). Intracellular signalling. PI 3-kinase puts GTP on the Rac. Curr. Biol., 5, 577-579 https://doi.org/10.1016/S0960-9822(95)00113-8
  71. Powner, D.J., Payne, R.M., Pettitt, T.R., Giudici, M.L., Irvine, R.F. and Wakelam, M.J. (2005). Phospholipase D2 stimulates integrin-mediated adhesion via phosphatidylinositol 4-phosphate 5-kinase Igamma b. J. Cell Sci., 118, 2975-2986 https://doi.org/10.1242/jcs.02432
  72. Powner, D.J. and Wakelam, M.J. (2002). The regulation of phospholipase D by inositol phospholipids and small GTPases. FEBS Lett., 531, 62-64 https://doi.org/10.1016/S0014-5793(02)03410-5
  73. Radisky, D.C. (2005). Epithelial-mesenchymal transition. J. Cell Sci., 118, 4325-4326 https://doi.org/10.1242/jcs.02552
  74. Rameh, L.E., Tolias, K.F., Duckworth, B.C. and Cantley, L.C. (1997). A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature, 390, 192-196 https://doi.org/10.1038/36621
  75. Ridley, A.J. and Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70, 389-399 https://doi.org/10.1016/0092-8674(92)90163-7
  76. Ridley, A.J., Paterson, H.F., Johnston, C.L., Diekmann, D. and Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 70, 401-410 https://doi.org/10.1016/0092-8674(92)90164-8
  77. Santarius, M., Lee, C.H. and Anderson, R.A. (2006). Supervised membrane swimming: small G-protein lifeguards regulate PIPK signalling and monitor intracellular PtdIns(4,5)P$_{2}$ pools. Biochem. J., 398, 1-13 https://doi.org/10.1042/BJ20060565
  78. Savagner, P. (2001). Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays, 23, 912-923 https://doi.org/10.1002/bies.1132
  79. Suh, B.C. and Hille, B. (2005). Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neurobiol., 15, 370-378 https://doi.org/10.1016/j.conb.2005.05.005
  80. Sun, Y., Ling, K., Wagoner, M.P. and Anderson, R.A. (2007). Type I gamma phosphatidylinositol phosphate kinase is required for EGF-stimulated directional cell migration. J. Cell Biol., 178, 297-308 https://doi.org/10.1083/jcb.200701078
  81. Syed, V., Mak, P., Du, C. and Balaji, K.C. (2007). beta-catenin mediates alteration in cell proliferation, motility and invasion of prostate cancer cells by differential expression of E-cadherin and protein kinase D1. J. Cell Biochem., On-line
  82. Symons, M. (1995). The Rac and Rho pathways as a source of drug targets for Ras-mediated malignancies. Curr. Opin. Biotechnol., 6, 668-674 https://doi.org/10.1016/0958-1669(95)80110-3
  83. Symons, M. (1996), Rho family GTPases: the cytoskeleton and beyond. Trends Biochem. Sci., 21, 178-181 https://doi.org/10.1016/S0968-0004(96)10022-0
  84. Tadokoro, S., Shattil, S.J., Eto, K., Tai, V., Liddington, R.C., de Pereda, J.M., Ginsberg, M.H. and Calderwood, D.A. (2003): Talin binding to integrin beta tails: a final common step in integrin activation. Science, 302, 103-106 https://doi.org/10.1126/science.1086652
  85. Takei, K. and Haucke, V. (2001). Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol., 11, 385-391 https://doi.org/10.1016/S0962-8924(01)02082-7
  86. Theard, D., Steiner, M., Kalicharan, D., Hoekstra, D. and van Ijzendoorn, S.C. (2007). Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/betacatenin-based adherens junctions. Mol. Biol. Cell, 18, 2313-2321 https://doi.org/10.1091/mbc.E06-11-1040
  87. Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer., 2, 442-454 https://doi.org/10.1038/nrc822
  88. Tilghman, R.W., Slack-Davis, J.K., Sergina, N., Martin, K.H., Iwanicki, M., Hershey, E.D., Beggs, H.E., Reichardt, L.F. and Parsons, J.T. (2005). Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells. J. Cell Sci., 118, 2613-2623 https://doi.org/10.1242/jcs.02380
  89. Tolias, K.F., Couvillon, A.D., Cantley, L.C. and Carpenter, C.L. (1998). Characterization of a Rac1- and RhoGDI-associated lipid kinase signaling complex. Mol. Cell Biol., 18, 762-770 https://doi.org/10.1128/MCB.18.2.762
  90. Van Aelst, L. and D'Souza-Schorey, C. (1997). Rho GTPases and signaling networks. Genes Dev., 11, 2295-2322 https://doi.org/10.1101/gad.11.18.2295
  91. Van Aelst, L. and Symons, M. (2002). Role of Rho family GTPases in epithelial morphogenesis. Genes Dev., 16, 1032-1054 https://doi.org/10.1101/gad.978802
  92. Vega-Salas, D.E., Salas, P.J., Gundersen, D. and Rodriguez-Boulan, E. (1987). Formation of the apical pole of epithelial (Madin-Darby canine kidney) cells: polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions. J. Cell Biol., 104, 905-916 https://doi.org/10.1083/jcb.104.4.905
  93. Vernon, A.E. and LaBonne, C. (2004). Tumor metastasis: a new twist on epithelial-mesenchymal transitions. Curr. Biol., 14, R719-R721 https://doi.org/10.1016/j.cub.2004.08.048
  94. Vestweber, D. (2008). VE-Cadherin. The major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler. Thromb. Vasc. Biol., 28, 223-232 https://doi.org/10.1161/ATVBAHA.107.158014
  95. Wang, F., Herzmark, P., Weiner, O.D., Srinivasan, S., Servant, G. and Bourne, H.R. (2002). Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol., 4, 513-518 https://doi.org/10.1038/ncb810
  96. Webb, D.J., Parsons, J.T. and Horwitz, A.F. (2002). Adhesion assembly, disassembly and turnover in migrating cells --over and over and over again. Nat. Cell Biol., 4, E97-E100 https://doi.org/10.1038/ncb0402-e97
  97. Willis, B.C. and Borok, Z. (2007). TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am. J. Physiol. Lung Cell Mol. Physiol., 293, L525-L534 https://doi.org/10.1152/ajplung.00163.2007
  98. Wodarz, A. and Nathke, I. (2007). Cell polarity in development and cancer. Nat. Cell Biol., 9, 1016-1024 https://doi.org/10.1038/ncb433
  99. Yam, P.T., Wilson, C.A., Ji, L., Hebert, B., Barnhart, E.L., Dye, N.A., Wiseman, P.W., Danuser, G. and Theriot, J.A. (2007). Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol., 178, 1207-1221 https://doi.org/10.1083/jcb.200706012
  100. Yang, S.A., Carpenter, C.L. and Abrams, C.S. (2004). Rho and Rho-kinase mediate thrombin-induced phosphatidylinositol 4-phosphate 5-kinase trafficking in platelets. J. Biol. Chem., 279, 42331-42336 https://doi.org/10.1074/jbc.M404335200
  101. Zavadil, J. and Bottinger, E.P. (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24, 5764-5774 https://doi.org/10.1038/sj.onc.1208927
  102. Zhang, X., Loijens, J.C., Boronenkov, I.V., Parker, G.J., Norris, F.A., Chen, J., Thum, O., Prestwich, G.D., Majerus, P.W. and Anderson, R.A. (1997). Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J. Biol. Chem., 272, 17756-17761 https://doi.org/10.1074/jbc.272.28.17756
  103. Zigmond, S.H. (1996). Signal transduction and actin filament organization. Curr. Opin. Cell Biol., 8, 66-73 https://doi.org/10.1016/S0955-0674(96)80050-0
  104. Zuppinger, C., Eppenberger-Eberhardt, M. and Eppenberger, H.M. (2000). N-Cadherin: structure, function and importance in the formation of new intercalated disc-like cell contacts in cardiomyocytes. Heart Fail Rev., 5, 251-257 https://doi.org/10.1023/A:1009809520194