• Title/Summary/Keyword: direct-radiator loudspeaker

Search Result 6, Processing Time 0.024 seconds

Controller design for compensation of nonlinear harmonic distortion in direct-radiator loudspeakers (직접 방사형 스피커의 비선형 고조파 왜곡 보상 제어기의 설계)

  • 김윤선;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.399-402
    • /
    • 1996
  • The electrodynamic loudspeakers should have a wide dynamic range to reproduce various sound levels. When the input signal is small, the radiated sound from the loudspeaker is not so much distorted. However, for large input signal with low frequency component the radiated sound is significantly distorted due to the nonlinearities of the loudspeaker. The suspension, damping, and magnetic flux of loudspeaker are the main sources of the nonlinearity. Such electromechanical parameters related to harmonic distortion have been represented by a polynomial model for diaphragm displacement, while each of the polynomial coefficient is evaluated by using the principle of harmonic balance experimentally. Based on the polynomial model, we designed a compensator for nonlinear harmonic distortion of direct radiator loudspeaker. Than observer is used to estimate the displacement of the loudspeaker diaphragm, which is rather difficult to measure directly in the conventional setting. The usefulness of the designed compensator is demonstrated by numerical simulations. Simulation results show about 30db decrease at the second and third higher harmonic distortions. We carry out an experiment on speaker to verify designed controller and nonlinear observer.

  • PDF

Acoustic Analysis and Design of a Direct-Radiator-Type Loudspeaker (직접방사형 스피커의 음향특성 해석및 설계)

  • 김준태;김정호;김진오
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.274-282
    • /
    • 1998
  • A systematic procedure for designing a direct-radiator-type loudspeaker has been developed, based on the numerical vibro-acoustic analysis and the Taguchi method. The finite-element model of the speaker cone has been used to calculated the vibration response of the cone excited by the voice coil. The vibration displacement of the speaker cone has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The acoustic frequency characteristics of the loudspeaker have been calculated by the boundary element method. The numerical results have been verified by the experiments carried out in an anechoic chamber. Some design parameters have been selected by using the Taguchi method, and the variations of the acoustic characteristics due to the changes of the parameter values have been examined using the numerical model.

  • PDF

Designing a Loudspeaker by Acoutsic Analysis and Taguchi Method (음향해석과 다구치법에 의한 스피커 설계)

  • 김준태;김정호;김진오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.568-574
    • /
    • 1998
  • A systematic procedure for designing a direct-radiator-type loudspeaker has been developed, based on a numerical vibro-acoustic analysis and the Taguchi method. The finite-element model of the speaker cone has been used to calculate the vibration response of the cone excited by the voice coil. The vibration response of the speaker cone has been used as a boundary condition for the acoustic analysis, and the acoustic frequency characteristics of the loudspeaker have been calculated by the boundary element method. The numerical model has been confirmed by comparing the numerical results with experimental ones obtained in an anechoic chamber. Some design parameters contributing dominantly to the acoustic characteristics have been selected by using the Taguchi method, and the variations of the acoustic characteristics due to the changes of the parameter values have been examined using the numerical model.

  • PDF

Identification of Nonlinear Parameters of Electrodynamic Direct-Radiator Loudspeaker with Output Noise (출력 소음을 고려한 직접방사형 라우드스피커의 비선형 매개변수 규명)

  • 박석태;홍석윤
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.887-899
    • /
    • 1998
  • It has been resulted that Lagrange multiplier method with statistical approach was superior to traditional harmonic balance method in identifying the nonlinear loudspeaker parameters when output signals were contaminated with Gaussian random noise. We have known that the displacement-dependent characteristic values of nonlinear parameters identified by traditional harmonic balance method were estimated less than original values by the increase of output noise and the stiffness coefficients were very sensitive to output noise. Also, by the sensitivity analysis we have verified that the harmonic distortions in acoustic radiation was mainly due to nonlinearity of force factor caused by uneven magnetic fields and that reducing the nonlinearity of damping coefficients were very effective for improving second harmonic distrotion of acoustic radiation.

  • PDF

Acoustic Characteristics of a Loudspeaker Obtained by Vibroacoustic Analysis (진동/음향 일방연성해석에 의한 스피커의 음향특성 연구)

  • 김준태;김정호;김진오;민진기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.153-159
    • /
    • 1996
  • The acoustic characteristics of a direct radiator type loudspeaker has been studied in this paper. The vibration displacement of the speaker cone paper obtained by the finite element analysis has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The frequency characteristics and the sound pressure distribution of the loudspeaker resulted from the radiation of the cone vibration have been calculated by the boundary element analysis. The numerical results have been verified by experiments carried out in an anechoic chamber. The variations of the acoustic characteristics due to the changes of some design parameters have been examined using the numerical model.

  • PDF

Acoustic characteristics of a loudspeaker obtained by vibration and acoustic analysis (진동/음향 해석에 의한 스피커의 음향특성 연구)

  • Kim, Jung-Ho;Kim, Jun-Tai;Kim, Jin-Oh;Min, Jin-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1742-1756
    • /
    • 1997
  • The acoustic characteristics of a direct radiator type loudspeaker has been studied in this paper. The natural modes of the speaker cone vibration analyzed numerically by the finite element method have been verified by comparing them with experimental results. The so-ap-proved finite-element model has been used to calculate the vibration response of the cone excited by the voice coil. The vibration displacement of the speaker cone paper has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The frequency characteristics, directivity, and sound pressure distribution of the loudspeaker have been calculated by the boundary element method. The numerical results have been verified by the experiments carried out in an anechoic chamber. The variations of the acoustic characteristics due to the changes of some design parameter values can be examined using the numerical model.