• Title/Summary/Keyword: direct vector control

Search Result 235, Processing Time 0.023 seconds

Analysis of Sensor Fault Effect in Induction Motor Drives (유도전동기 드라이브 시스템에서 센서 고장효과 분석)

  • Ryu, Ji-Su;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2011-2013
    • /
    • 2003
  • The effects of sensor faults on motor variables and control performance in induction motor drives are analyzed by both theoretical approach and simulation study, Vector control and direct torque control method for induction motor are well known. To control speed or position, the informations on rotor speed and rotor or stator flux are required in these control algorithms. The speed is measured by encoder. and the rotor or stator flux is estimated using motor parameters and measured currents. The control input generated based on the information from a faulted sensor should be far from the desired value and deteriorates the overall control performance.

  • PDF

A study of Train Running Simulation for Electronic Performance Analysis of Propulsion (추진 장치의 전기적 성능 시험을 위한 열차 운행 모의 성능 분석 연구)

  • Kim, Young-Chan;Seo, Young-Ger;Lee, Byung-Song;Hong, Soon-Chan;Ko, Jung-Sun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.483-490
    • /
    • 2007
  • The aim of the paper is to analysis on train propulsion system and to study for energy saving. For this study, we make the program that simulate actual operation of the train route. The train running simulation is performed from starting station to 4th station by using the route datas of Deajeon Metro Subway. The study for control method of electrical motor and energy recovery to save energy is selected. The train propulsion system is constituted as a M-G Set, which is realized via Space Vector Modulation(SVM) - Direct Torque Control(DTC), the energy consumption during train operation and energy recovery during breaking is simulated by Simplorer program, from this result, the energy consumption and recovery of train with SVM-DTC is studied.

A Study on the Sensorless Speed Control of Induction Motor using Direct Torque Control (직접토크 제어를 이용한 유도전동기의 센서리스 속도제어에 관한 연구)

  • Yoon, Kyoung-Kuk;Oh, Sae-Gin;Kim, Jong-Su;Kim, Yoon-Sik;Lee, Sung-Gun;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1261-1267
    • /
    • 2009
  • The Direct Torque Control[DTC] controls torque and flux by restricting the flux and torque errors within respective hysteresis bands, and motor torque and flux are controlled by the stator voltage space vector using optimum inverter switching table. And the Current Error Compensation method is on the basis of compensating current difference between the induction motor and its numerical model, in which the identical stator voltage is supplied for both the actual motor and the model so that the gaps between stator currents of the two can be forced to decay to zero as time proceeds. Consequently, the rotor speed approaches to the model speed, namely, setting value and the system can control motor speed precisely. This paper proposes a new sensorless speed control of induction motor using DTC and Current Error Compensation, which requires neither shaft encoder, speed estimator nor PI controllers. And through computer simulation, confirm effectiveness of proposed method.

Harmonics Control of Electric Propulsion System using Direct Torque Control (직접벡터제어방식을 사용하는 전기추진시스템의 고조파 제어)

  • Kim, Jong-Su;Oh, Sae-Gin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2618-2624
    • /
    • 2009
  • Harmonics (or distortion in wave form) has always existed in electrical power systems. It is harmless as long as its level is not substantial. However, with the recent rapid advancement of power electronics technology, so-called nonlinear loads, such as variable frequency drives for motor power/speed control, are increasingly finding their way to shipboard or offshore applications. In this paper a new approach to direct torque control (DTC) of induction motor drive is presented. In comparison with the conventional DTC methods the inverter switching frequency is constant and is dramatically increased, requiring neither any increase of the sampling frequency, nor any high frequency dither signal. The well-developed space vector modulation technique is applied to inverter control in the proposed DTC-based induction motor drive system, thereby dramatically reducing the current harmonics. As compared to the existing DTC approach with constant inverter switching frequency, the presented new approach does not invoke any concept of deadbeat control, thereby dramatically reducing the computations.

A Study of Using Optimal Hysteresis Band Amplitude for Direct Torque Control of Induction Motor (유도전동기 직접토크제어의 히스테리시스 밴드 크기의 최적화에 관한 연구)

  • Jeong B.H.;Kim S.K.;Park J.K.;Oh G.K.;Cho G.B.;Baek H.L.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.812-815
    • /
    • 2003
  • Most of all, DTC drive is very simple in its implementation because it needs only two hysteresis comparator and switching vector table for both flux and torque control. The switching strategy of a conventional direct torque control scheme which is based on hysteresis comparator results in a variable switching frequency which depends on the speed, flux, stator voltage and the hysteresis of the comparator. The amplitude of hysteresis band greatly influences on the drive performance such as flux and torque ripple and inverter switching frequency. In this paper the influence of the amplitudes of flux and torque hysteresis bands and sampling time of control program on the torque and flux ripples are investigated. Simulation results confirm the superiority of the DTC under the proposed method over the conventional DTC.

  • PDF

The Study of Mutation Spectrum in Iac / Gene of Transgenic Big Blue$\textregistered$ Cell Line Following Short-Term Exposure to 4-Nitroquinoline N-oxide

  • Youn, Ji-Youn;Kim, Kyung-Ran;Cho, Kyung-Hea;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.64-64
    • /
    • 1996
  • Transgenic animal and cell line models which are recently developed in toxicology field combined with molecular biological technique, are powerful tools for studying of mutation in vivo and in vitro, respectively. The Big Blue mutagenesis assay system is one of the most widely used transgenic systems. Especially, for the study of direct acting mutagens, Big Blue cell line is very useful and powerful to evaluate mutagenicity because the mutation frequency and mutationspectrlun showed no distinct differences between cell line and animal. The Big Blue cell lines carry stably integrated copies of lambda shuttle vector containing lac I gene as a mutational target. These lambda shuttle vectors are useful for various mutagenesis related studies in eukaryotic system due to their ability to be exposed mutagen and then transfer a suitable target DNA sequence to it convenient organism for analysis. We tried to assess the mutagenic effect of 4-NQO with Big Blue cell line. After the treatment of 4-NQO, genomic DNA was isolated and lambda shuttle vector was packaged by in Vitro packaging and then these were plated on bacterial host in the presence of X-gal to screen mutation in the lac I. We determined MF as a ratio of blue plaques versus colorless plaques and now undergoing the mutation spectrum of 4-NQO in lac J gene sequence.

  • PDF

VPI-based Control Strategy for a Transformerless MMC-HVDC System Under Unbalanced Grid Conditions

  • Kim, Si-Hwan;Kim, June-Sung;Kim, Rae-Young;Cho, Jin-Tae;Kim, Seok-Woong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2319-2328
    • /
    • 2018
  • This paper introduces a control method for a transformerless MMC-HVDC system. The proposed method can effectively control the grid currents of the MMC-HVDC system under unbalanced grid conditions such as a single line-to-ground fault. The proposed method controls the currents of the positive sequence component and the negative sequence component without separating algorithms. Therefore, complicated calculations for extracting the positive sequence and the negative sequence component are not required. In addition, a control method to regulate a zero sequence component current under unbalanced grid conditions in the transformerless MMC-HVDC system is also proposed. The validity of the proposed method is verified through PSCAD/EMTDC simulation.

Speed Sensorless Direct Vector Control of Induction Motors Considering Iron-Loss (철손을 고려한 유도기의 센서리스 직접 베터 제어)

  • 위성돈;신명호;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.501-504
    • /
    • 1999
  • 과거 벡터 제어의 모델링에 있어 무시되어온 철손의 영향이 최근 여러 논문들에서 연구되어졌으며, 이의 영향이 적지 않음이 밝혀졌다. 본 논문은 속도 센서리스에서의 철손으로 인한 영향을 보상, 직접 회전자 자속 제어와 직접 고정자 자속 제어에 적용하였다. 또한 센서리스 제어에서의 철손의 영향과 그 보상 방법을 보여주며, 시뮬레이션을 통해 이러한 제안의 타당성을 보인다.

  • PDF

이산시간 비 최소위상 시스템의 직접적응 극배치 및 정정도에 관한 연구

  • Choe, Jin-Yeong;Choe, Jong-Ho
    • ETRI Journal
    • /
    • v.6 no.1
    • /
    • pp.3-9
    • /
    • 1984
  • This paper presents a direct adaptive poleplacement control scheme which is applicable to discrete-time non-minimum phase systems. It is proved that by this scheme the poles can be placed at the desired locations and the overall state vector of the system is uniformly bounded if the reference input is sufficiently rich, and also proved that in case of insufficiently rich reference input the overall system can still be stabilized though the poles may not be placed exactly at the desired locations. The effectiveness of this scheme is verified by digital computer simulations.

  • PDF

Control Method for Fault-Tolerant Active Power Filters

  • Zhang, Chenyu;Zheng, Jianyong;Mei, Jun;Deng, Kai;Zhou, Fuju
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.796-805
    • /
    • 2015
  • New direct and indirect current control methods for a fault-tolerant active power filter topology are presented in this paper. Since a three-phase four-switch topology has a phase bridge current which cannot be directly controlled, a hysteresis control method in the α-β plane which controls the three-phase current in the two-phase stationary coordinate system is proposed. The improved SVPWM algorithm is able to eliminate the operation of the trigonometric functions in the traditional algorithm by rotating the α-β coordinates and alternating the sequence of the output vectors, which in turn simplifies the algorithm and reduces the switching frequency. The selection of the DC-side reference voltage and DC-side capacitor equalization strategy are also discussed. Simulation and experiments demonstrate that the proposed control method is correct and feasible.