• Title/Summary/Keyword: direct shear strength

Search Result 412, Processing Time 0.025 seconds

Assessment of Shear Strength Parameter for Weathered Soils Using Artificial Neural Network (인공신경망을 이용한 풍화토의 강도정수 산정)

  • Lee, Moo-Cheol;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.147-154
    • /
    • 2008
  • Weathered soil slope loses its shear strength if it is exposed in the air for a long time or in contact with water. And this kind of strength loss is remarkable in dam slope which has very big difference in water level according to the season. In this study, shear strength loss of weathered soil due to saturation had been found out through dryness and wetness repetition direct shear test. Also relation between penetration blow number(Nc) and shear strength parameter had been found out through small sized dynamic cone penetration test device and the correlation equation of Nc had been proposed through artificial neural network analysis to estimate shear strength parameter easily.

Shear strength characteristics of a compacted soil under infiltration conditions

  • Rahardjo, H.;Meilani, I.;Leong, E.C.;Rezaur, R.B.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2009
  • A significantly thick zone of steep slopes is commonly encountered above groundwater table and the soils within this zone are unsaturated with negative pore-water pressures (i.e., matric suction). Matric suction contributes significantly to the shear strength of soil and to the factor of safety of unsaturated slopes. However, infiltration during rainfall increases the pore-water pressure in soil resulting in a decrease in the matric suction and the shear strength of the soil. As a result, rainfall infiltration may eventually trigger a slope failure. Therefore, understanding of shear strength characteristics of saturated and unsaturated soils under shearing-infiltration (SI) conditions have direct implications in assessment of slope stability under rainfall conditions. This paper presents results from a series of consolidated drained (CD) and shearing-infiltration (SI) tests. Results show that the failure envelope obtained from the shearing-infiltration tests is independent of the infiltration rate. Failure envelopes obtained from CD and SI tests appear to be similar. For practical purposes the shear strength parameters from the CD tests can be used in stability analyses of slopes under rainfall conditions. The SI tests might be performed to obtain more conservative shear strength parameters and to study the pore-water pressure changes during infiltration.

Comparison of Mechanical Characteristics of Fiber-Reinforced Lightweight Soils (섬유보강 혼합경량토의 역학적 특성 비교)

  • Kim, Yun-Tae;Han, Woo-Jong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.51-58
    • /
    • 2008
  • The objective of this study was to investigate the mechanical characteristics of fiber-reinforced lightweight soil using waste fishing net or monofilament for recycling both dredged soils and bottom ash. Reinforced lightweight soil consists of dredged soil, cement, air foam, and bottom ash. Waste fishing net or monoiament was added the mixture in order to increase the shear strength of the lightweight soil. Test specimens were fabricated with various mixing conditions, including waste fishing net content and monofilament content. Several series of unconfined compression tests and direct shear tests were carried out. From the experimental results, it was found that the unconfined compressive strength, as well as the stress-strain behavior of reinforced lightweight soil was strongly influenced by mixing conditions. In this study, the maximum increase in shear strength was obtained with either a 0.5% content of monofilament or 0.25% waste fishing net. The unconfined compressive strength of reinforced lightweight soil with monofilament was greater than that of reinforced lightweight soil with waste fishing net.

Friction Behavior at the Soil/Geosynthetic Interface in Respect of Efficiency (효율관점에서 흙/토목섬유 접촉면에서의 마찰특성)

  • Ahn, Hyun-Ho;Shim, Seong-Hyeon;Shim, Jai-Beom;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.65-72
    • /
    • 2007
  • Large-scale direct shear tests were conducted in order to investigate both the shear strength of soil itself and the friction behavior at the interface of soil/geosynthetics in respect of efficiency in this study. Sand, crushed stone and three types of geotextile (i.e. one woven geotextile and two nonwoven geotextiles) were used in the experimental program. The considered interfaces for the evaluation of interface shear strength in this study included sand/sand, crushed stone/crushed stone, sand/woven geotextile, crushed stone/woven geotextile, crushed stone/nonwoven geotextile-A and crushed stone/nonwoven geotextile-B. The results showed that the efficiency of 84% was obtained at the interface of sand/woven geotextile compared with the shear strength of sand itself (i.e. sand/sand interface). The efficiencies of 74%, 83% and 72% were obtained at the interface of crushed stone/nonwoven geotextile-A, crushed stone/nonwoven geotextile-B and crushed stone/woven geotextile, respectively compared with the shear strength of crushed stone itself (i.e. crushed stone/crushed stone interface).

Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghorbani, Ali;Alamoti, Mohsen Nasiri
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • The importance of using materials cost effectively to enhance the strength and reduce the cost, and weight of earth fill materials in geotechnical engineering led researchers to seek for modifying the soil properties by adding proper additives. Lightweight fill materials made of soil, binder, water, and Expanded polystyrene (EPS) beads are increasingly being used in geotechnical practices. This paper primarily investigates the behavior of sandy soil, modified by EPS particles. Besides, the mechanical properties of blending sand, EPS and the binder material such as fly ash and cement were examined in different mixing ratios using a number of various laboratory studies including the Modified Standard Proctor (MSP) test, the Unconfined Compressive Strength (UCS) test, the California Bearing Ratio (CBR) test and the Direct Shear test (DST). According to the results, an increase of 0.1% of EPS results in a reduction of the density of the mixture for 10%, as well as making the mixture more ductile rather than brittle. Moreover, the compressive strength, CBR value and shear strength parameters of the mixture decreases by an increase of the EPS beads, a trend on the contrary to the increase of cement and fly ash content.

A Study on Shear Strength of Granular Due to The Various Particle Size (조립질 입자크기가 전단강도에 미치는 영향)

  • Lee, Seungho;Seo, Hyungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.71-76
    • /
    • 2012
  • Shear strength of soil is power that resists failure and sliding according to any face in soils and one of the most important factors during engineering properties of soil. Shear strength is used for engineering science problems as bearing capacity methods of foundation or piles, slope stability after dam or Cutting Embankment and stability problem analysis of soils as lateral earth pressure of soil structures, ets. This study has analyzed shear strength change of samples classified 2.00mm(10sieve)와 0.85mm(20sieve), 0.475mm(40sieve) using direct shear tester after removing and drying cohesive soil ingredient of Weathered granite soil Therefore, this study would help studies about shear strength properties by particle size.

Anisotropic Shear Strength of Artificially Fractured Rock Joints Under Low Normal Stress (낮은 수직응력 하에서 인공 절리면의 전단 이방성에 관한 연구)

  • 곽정열;이상은;임한욱
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.169-179
    • /
    • 2003
  • Anisotropic shear strength of rock joints is studied based on the artificially fractured specimens using experimental and analytical methods. Series of direct shear tests are performed to obtain the strength, stiffness and friction angle of joints under various low normal stresses and shearing directions. The results of shear strength and stiffness show anisotropic value according to shearing direction under low normal stress specially less than 2.45 MPa. But, the effect of joint roughness on strength decreases with increasing normal stress. To estimate more effectively the peak shear strength under low normal stress, the modified Barton's equation is suggested.

Evaluation of ground characteristics near underground rainfall storage facilities using shear wave velocity (전단파 속도를 이용한 지하 저류조 주변 지반특성 평가)

  • Jo, Seon-Ah;Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.225-236
    • /
    • 2014
  • Shear wave velocity was used to estimate the geotechnical characteristics (void ratio and shear strength) of ground near an underground rainfall storage facility. An oedometer cell was utilized to measure the shear wave velocity and the displacement of specimens. Shear strengths were obtained by direct shear tests. The relationships along the shear wave velocity, void ratio, and shear strength were verified and used to infer the shear strength profile with the depth. In addition, changes in shear strength due to the construction of the underground rainfall storage system were estimated using the suggested method. The results show that the in-situ shear strength deduced from the shear wave velocity-void ratio-shear strength relationship is in good agreement with that obtained from an in-situ investigation (SPT).

Shear Behavior of Sands Depending on Shear Box Type in Direct Shear Test (직접전단실험시 전단상자의 종류에 따른 모래시료의 전단거동)

  • Hong, Young-Ho;Byun, Yong-Hoon;Chae, Jong-Gil;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.51-62
    • /
    • 2015
  • Shear behavior obtained by direct shear tests is dependent on shear box and boundary condition. The objective of this study is to analyze problems of conventional direct shear test (type-A) and provide the reliable results by developing type-C direct shear apparatus. Experimental tests are carried out for Ulleung sand by using type-A and -C direct shear devices. The soil specimens, which are prepared at the relative density of 60%, and are applied to vertical confining stresses of 50, 100, 200, 300, and 400 kPa, are sheared at a constant shear strain rate of 0.5 mm/min. By comparing the results obtained by type-A and -C direct shear apparatus under constant normal load (CNL) condition, the performance of new one is verified. In addition, two constrained conditions including constant normal load (CNL) and constant pressure (CP) are applied to type-C one. Experimental results show that type-A direct shear apparatus has some problems such as rotating of loading plate and upper shear box, and the frictional forces between soil and inner wall of upper shear box. Thus, the shear strengths obtained by type-A device are overestimated or underestimated depending on shear box and boundary condition. On the other hand, type-C device produces clear and consistent test results regardless of constrained conditions. This study represents that type-C direct shear apparatus not only can solve the problems of type-A direct shear apparatus but provide the reliable results.

Shear Strength of Precast Reinforced SHCC Walls (프리캐스트 SHCC 벽판의 전단강도)

  • Kim, Sun-Woo;Lee, Young-Oh;Nam, Sang-Hyun;Chan, Jun-Ho;Ryu, Seung-Hyun;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.57-58
    • /
    • 2010
  • In this paper, direct tensile strength, $f_t$, and FR index, $F_i$, were considered, and factor ${\alpha}$ between and $f_t$ and $\sqrt{f'_c}$ was estimated through the results of preceding studies on the material properties of SHCCs in order to propose equation for evaluating shear strength of SHCC walls. Shear strength calculated by the proposed equation predicted shear strength of SHCC walls accurately, showing similar tendencies to experimental results.

  • PDF