• 제목/요약/키워드: direct shear behavior

검색결과 217건 처리시간 0.029초

개선된 직접전단시험을 이용한 전단영역의 거동 (Behavior of Shear Zone by Improved Direct Shear Test)

  • 변용훈;쭝꽝훙;짠밍콰;이종섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.607-614
    • /
    • 2010
  • Shear behavior of granular soils largely affects the safety and stability of underground and earth structures. This study presents the characteristics of shear zone in a direct shear test using shear wave and electrical resistivity measurements. An innovative direct shear box made of transparent acrylic material has been developed to prevent direct electric current. Bender elements and electrical resistivity probe are embedded in the wall of direct shear box to estimate the shear wave velocities and the electrical resistivity at the shear and non-shear zones. Experimental results show that the void ratio and shear wave velocity at shear zone increase during shearing while the values remain constant at non-shear zone. The results demonstrate correlation among the contact force, small strain shear modulus, and void ratio at shear zone. This study suggests that the application of the modified direct shear box including shear wave and electrical resistivity measurements may become an effective tool for analyzing soil behavior at shear zone.

  • PDF

Influence of specimen height on the shear behavior of glass beads in the direct shear test

  • Young-Ho Hong;Yong-Hoon Byun;Jong-Sub Lee
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.461-472
    • /
    • 2023
  • A box scale affects the shear behavior of soils in the direct shear test. The purpose of this study is to investigate the scale effect on the shear behavior of dilative granular materials by testing specimens of different heights placed in a type C shear box. Experimental tests were performed on specimens composed of glass beads with different heights and equal initial void ratios. Results showed that the peak friction and dilation angles linearly increased with the specimen height; however, the residual friction angle remained relatively constant. Similarly, the shear stiffness increased with the specimen height, rapidly reaching its peak state. Height does not have a significant effect on the total volume changes; nevertheless, a high aspect ratio can be assumed to result in global and homogeneous failure. The results and interpretations may be used as reference for recommending shear box scale in direct shear tests.

직접전단시험과 이산요소법에 기반한 전단 시뮬레이션과의 비교 (A Comparison of the Direct Shear Test and Shear Simulation Based on the Discrete Element Method)

  • 정성헌;손정현
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.86-91
    • /
    • 2020
  • An important factor of rough road modeling is analyzing the shear behavior properties of the rough road. These properties influence the drawbar pull of the tool when interacting with the soil used in agriculture. Furthermore, shear behavior properties are important because sinkage and shear stress are generated when wheels drive on rough roads. In this study, we performed a direct shear test to investigate the shear behavior properties of soils and compare with the direct shear simulation; shear force derived by the coupled analysis of discrete element method; and multi-body dynamics. Soil contact parameters were measured in a wheel and soil contact simulation followed by comparison of the simulated and experimentally measured shear force.

Cyclic behavior of various sands and structural materials interfaces

  • Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • 제10권1호
    • /
    • pp.1-19
    • /
    • 2016
  • This paper presents the results of an intensive experimental investigation on cyclic behavior of various sands and structural materials interface. Comprehensive measurements of the horizontal displacement and shear stresses developed during testing were performed using an automated constant normal load (CNL) cyclic direct shear test apparatus. Two different particle sizes (0.5 mm-0.25 mm and, 2.0 mm-1.0 mm) of sands having distinct shapes (rounded and angular) were tested in a cyclic direct shear testing apparatus at two vertical stress levels (${\sigma}=50kPa$, and 100 kPa) and two rates of displacement ($R_D=2.0mm/min$, and 0.025 mm/min) against various structural materials (i.e., steel, concrete, and wood). The cyclic direct shear tests performed during this investigation indicate that (i) the shear stresses developed during shearing highly depend on both the shape and size of sand grains; (ii) characteristics of the structural materials are closely related to interface response; and (iii) the rate of displacement is slightly effective on the results.

옹벽구조물용 복합재료의 전단거동 특성 (The Shear Behavior of Composite Material for Retaining Wall)

  • 오기대;김경열;김대홍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1359-1364
    • /
    • 2008
  • In these days, the composite material is popular as a material of Retaining wall because of the advantages of economy and construction. In general, retaining wall is not estimated for the stability of structure, but some of retaining walls that are composed of composite materials became thin because of the highly dense materials. So the concern of shear failure for the structure is rising. Because standard test criterion and large scale tests equipment are rarely available, few studies are performed. So, in this study, we performed large scale direct shear tests for various confining stresses(147, 294, 441 kPa), and estimate shear behavior of composite material by the relation of shear stress - displacement and vertical - shear displacement.

  • PDF

직접전단실험시 전단상자의 종류에 따른 모래시료의 전단거동 (Shear Behavior of Sands Depending on Shear Box Type in Direct Shear Test)

  • 홍영호;변용훈;채종길;이종섭
    • 한국지반공학회논문집
    • /
    • 제31권3호
    • /
    • pp.51-62
    • /
    • 2015
  • 직접전단시험은 전단상자의 경계조건에 따라 흙의 전단거동이 달라지는 것으로 알려져있다. 본 연구의 목적은 Type-A 형태의 기존 직접전단시험기의 문제점에 대해 분석하고 Type-C 형태의 직접전단시험기의 개발을 통해 신뢰성 높은 직접전단결과를 도출하는데 있다. 기존 직전단시험기와 새로 개발된 직접전단시험기를 사용하여 상대밀도가 60%로 조성된 모래시료에 대해 초기 구속응력 50kPa, 100kPa, 200kPa, 300kPa, 400kPa에서 0.5mm/min의 일정한 전단속도로 직접전단시험을 수행하였다. 일정수직하중 조건에서 수행된 Type-A의 직접전단시험기와 Type-C 시험기의 결과를 비교하여 새로 개발된 시험기의 신뢰성을 평가하였다. 또한 새로 개발된 시험기를 사용하여 일정 수직하중 조건과 정압조건의 두 가지 구속조건에 대한 직접전단시험을 수행하여 그 결과를 비교, 분석하였다. 실험결과, Type-A의 직접전단시험기에서는 하중재하판과 상부 전단상자가 기울거나, 흙의 체적변화로부터 발생되는 시료와 전단상자 내부 벽면간의 마찰이 전단면에 작용하는 응력에 영향을 끼치게 되는 문제가 발생하였다. Type-A의 직접전단시험기에서는 전단상자 형태와 경계조건에 따라 전단강도가 과대 혹은 과소평가 되었다. Type-C의 직접전단시험기에서는 구속조건에 상관없이 일관성있는 실험결과를 나타내었다. 본 연구는 Type-C의 형태로 개발된 직접전단시험기를 통해 Type-A 직접전단시험법의 문제점을 해결하고 신뢰성있는 결과를 도출할 수 있음을 보여준다.

Numerical investigation into particle crushing effects on the shear behavior of gravel

  • Xi Li;Yayan Liu;Guoping Qian;Xueqing Liu;Hao Wang;Guoqing Yin
    • Geomechanics and Engineering
    • /
    • 제35권2호
    • /
    • pp.209-219
    • /
    • 2023
  • This paper presents numerical investigations into the particle crushing effect on the shear properties of gravel under direct shear condition. A novel particle crushing model was developed based on the octahedral shear stress criterion and fragment replacement method. A series of direct shear tests were carried out on unbreakable particles and breakable particles with different strengths. The evolutions of the particle crushing, shear strength, volumetric strain behavior, and contact force fabric during shearing were analyzed. It was observed that the number of crushed particles increased with the increase of the shear displacement and axial pressure and decreased with the particle strength increasing. Moreover, the shear strength and volume dilatancy were obviously decreased with particle crushing. The shear displacement of particles starting to crush was close to that corresponding to the peak shear stress got. Besides, the shear-hardening behavior was obviously affected by the number of crushed particles. A microanalysis showed that due to particle crushing, the contact forces and anisotropy decreased. The mechanism of the particle crushing effect on the shear strength was further clarified in terms of the particle friction and interlock.

다양한 시험법에 의한 토목섬유 사이의 접촉 전단 강도 평가 (Evaluation of interface shear strength between geosynthetics using three kinds of testing methods)

  • 서민우;박준범;박인준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.356-363
    • /
    • 2004
  • In this research, the shear behavior of four different interfaces consisting of 4 types of geosynthetics was examined, and both static and dynamic tests for the geosynthetic interface were conducted. The monotonic shear experiments were performed by using an inclined board apparatus and large direct shear device. The interface shear strength obtained from the inclined board tests were compared with those calculated from large direct shear tests. The comparison results indicated that direct shear tests are likely to overestimate the shear strength in low normal stress range where direct shear tests were not performed. Curved failure envelopes were also obtained for interface cases where two static shear tests were conducted. By comparing the friction angles measured from three tests, i.e. direct shear, inclined board, and shaking table tests, it was found that the friction angle might be different depending on the test method and normal stresses applied in this research. Therefore, it was concluded that the testing method should be determined carefully by considering the type of loads and the normal stress expected in the field.

  • PDF

Physical and Particle Flow Modeling of Shear Behavior of Non-Persistent Joints

  • Ghazvinian, A.;Sarfarazi, V.;Nejati, H.;Hadei, M.R.
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2011년도 추계 총회 및 창립 30주년 기념 심포지엄
    • /
    • pp.3-21
    • /
    • 2011
  • Laboratory experiments and numerical simulations using Particle Flow Code (PFC2D) were performed to study the effects of joint separation and joint overlapping on the full failure behavior of rock bridges under direct shear loading. Through numerical direct shear tests, the failure process is visually observed and the failure patterns are achieved with reasonable conformity with the experimental results. The simulation results clearly showed that cracks developed during the test were predominantly tension cracks. It was deduced that the failure pattern was mostly influenced by both of the joint separation and joint overlapping while the shear strength is closely related to the failure pattern and its failure mechanism. The studies revealed that shear strength of rock bridges are increased with increasing in the joint separation. Also, it was observed that for a fixed cross sectional area of rock bridges, shear strength of overlapped joints are less than the shear strength of non-overlapped joints.

  • PDF

대형직접전단시험과 대형삼축시험을 통한 석산골재의 전단거동 특성 비교 (Comparison of Shear Behavior for Quarry Blasted Rocks Based on Large Scale Direct Shear Test and Large Scale Triaxial Test)

  • 이대수;김경열;오기대
    • 한국지반공학회논문집
    • /
    • 제24권2호
    • /
    • pp.5-14
    • /
    • 2008
  • 국내 석산에서 생산되는 골재를 사용하여 대형삼축시험과 대형직접전단시험을 동시에 수행한 후 전단특성을 비교하였다. 비교를 위하여 시험조건을 가능한 일치시켰으며, 상대밀도를 50%, 70%, 90%의 세 가지로 변화시켜 시험을 수행하였다. 시험결과 응력-변형률 거동은 두 가지 시험에서 동일하게 나타나며, 전단강도는 상대밀도의 크기에 따라 시험방법별로 추세가 달라진다. 즉, 낮은 상대밀도에서는 대형직접전단시험의 내부마찰각이 대형삼축압축시험 결과 값에 비하여 작게 나타나고, 높은 상대밀도에서는 이 현상이 역전됨을 확인하였다.