• Title/Summary/Keyword: direct shear behavior

Search Result 217, Processing Time 0.03 seconds

Behavior of Shear Zone by Improved Direct Shear Test (개선된 직접전단시험을 이용한 전단영역의 거동)

  • Byeon, Yong-Hoon;Truong, Q. Hung;Tran, M. Khoa;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.607-614
    • /
    • 2010
  • Shear behavior of granular soils largely affects the safety and stability of underground and earth structures. This study presents the characteristics of shear zone in a direct shear test using shear wave and electrical resistivity measurements. An innovative direct shear box made of transparent acrylic material has been developed to prevent direct electric current. Bender elements and electrical resistivity probe are embedded in the wall of direct shear box to estimate the shear wave velocities and the electrical resistivity at the shear and non-shear zones. Experimental results show that the void ratio and shear wave velocity at shear zone increase during shearing while the values remain constant at non-shear zone. The results demonstrate correlation among the contact force, small strain shear modulus, and void ratio at shear zone. This study suggests that the application of the modified direct shear box including shear wave and electrical resistivity measurements may become an effective tool for analyzing soil behavior at shear zone.

  • PDF

Influence of specimen height on the shear behavior of glass beads in the direct shear test

  • Young-Ho Hong;Yong-Hoon Byun;Jong-Sub Lee
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.461-472
    • /
    • 2023
  • A box scale affects the shear behavior of soils in the direct shear test. The purpose of this study is to investigate the scale effect on the shear behavior of dilative granular materials by testing specimens of different heights placed in a type C shear box. Experimental tests were performed on specimens composed of glass beads with different heights and equal initial void ratios. Results showed that the peak friction and dilation angles linearly increased with the specimen height; however, the residual friction angle remained relatively constant. Similarly, the shear stiffness increased with the specimen height, rapidly reaching its peak state. Height does not have a significant effect on the total volume changes; nevertheless, a high aspect ratio can be assumed to result in global and homogeneous failure. The results and interpretations may be used as reference for recommending shear box scale in direct shear tests.

A Comparison of the Direct Shear Test and Shear Simulation Based on the Discrete Element Method (직접전단시험과 이산요소법에 기반한 전단 시뮬레이션과의 비교)

  • Jung, Sung-Heon;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.86-91
    • /
    • 2020
  • An important factor of rough road modeling is analyzing the shear behavior properties of the rough road. These properties influence the drawbar pull of the tool when interacting with the soil used in agriculture. Furthermore, shear behavior properties are important because sinkage and shear stress are generated when wheels drive on rough roads. In this study, we performed a direct shear test to investigate the shear behavior properties of soils and compare with the direct shear simulation; shear force derived by the coupled analysis of discrete element method; and multi-body dynamics. Soil contact parameters were measured in a wheel and soil contact simulation followed by comparison of the simulated and experimentally measured shear force.

Cyclic behavior of various sands and structural materials interfaces

  • Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • This paper presents the results of an intensive experimental investigation on cyclic behavior of various sands and structural materials interface. Comprehensive measurements of the horizontal displacement and shear stresses developed during testing were performed using an automated constant normal load (CNL) cyclic direct shear test apparatus. Two different particle sizes (0.5 mm-0.25 mm and, 2.0 mm-1.0 mm) of sands having distinct shapes (rounded and angular) were tested in a cyclic direct shear testing apparatus at two vertical stress levels (${\sigma}=50kPa$, and 100 kPa) and two rates of displacement ($R_D=2.0mm/min$, and 0.025 mm/min) against various structural materials (i.e., steel, concrete, and wood). The cyclic direct shear tests performed during this investigation indicate that (i) the shear stresses developed during shearing highly depend on both the shape and size of sand grains; (ii) characteristics of the structural materials are closely related to interface response; and (iii) the rate of displacement is slightly effective on the results.

The Shear Behavior of Composite Material for Retaining Wall (옹벽구조물용 복합재료의 전단거동 특성)

  • Oh, Gi-Dae;Kim, Kyung-Yul;Kim, Dae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1359-1364
    • /
    • 2008
  • In these days, the composite material is popular as a material of Retaining wall because of the advantages of economy and construction. In general, retaining wall is not estimated for the stability of structure, but some of retaining walls that are composed of composite materials became thin because of the highly dense materials. So the concern of shear failure for the structure is rising. Because standard test criterion and large scale tests equipment are rarely available, few studies are performed. So, in this study, we performed large scale direct shear tests for various confining stresses(147, 294, 441 kPa), and estimate shear behavior of composite material by the relation of shear stress - displacement and vertical - shear displacement.

  • PDF

Shear Behavior of Sands Depending on Shear Box Type in Direct Shear Test (직접전단실험시 전단상자의 종류에 따른 모래시료의 전단거동)

  • Hong, Young-Ho;Byun, Yong-Hoon;Chae, Jong-Gil;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.51-62
    • /
    • 2015
  • Shear behavior obtained by direct shear tests is dependent on shear box and boundary condition. The objective of this study is to analyze problems of conventional direct shear test (type-A) and provide the reliable results by developing type-C direct shear apparatus. Experimental tests are carried out for Ulleung sand by using type-A and -C direct shear devices. The soil specimens, which are prepared at the relative density of 60%, and are applied to vertical confining stresses of 50, 100, 200, 300, and 400 kPa, are sheared at a constant shear strain rate of 0.5 mm/min. By comparing the results obtained by type-A and -C direct shear apparatus under constant normal load (CNL) condition, the performance of new one is verified. In addition, two constrained conditions including constant normal load (CNL) and constant pressure (CP) are applied to type-C one. Experimental results show that type-A direct shear apparatus has some problems such as rotating of loading plate and upper shear box, and the frictional forces between soil and inner wall of upper shear box. Thus, the shear strengths obtained by type-A device are overestimated or underestimated depending on shear box and boundary condition. On the other hand, type-C device produces clear and consistent test results regardless of constrained conditions. This study represents that type-C direct shear apparatus not only can solve the problems of type-A direct shear apparatus but provide the reliable results.

Numerical investigation into particle crushing effects on the shear behavior of gravel

  • Xi Li;Yayan Liu;Guoping Qian;Xueqing Liu;Hao Wang;Guoqing Yin
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.209-219
    • /
    • 2023
  • This paper presents numerical investigations into the particle crushing effect on the shear properties of gravel under direct shear condition. A novel particle crushing model was developed based on the octahedral shear stress criterion and fragment replacement method. A series of direct shear tests were carried out on unbreakable particles and breakable particles with different strengths. The evolutions of the particle crushing, shear strength, volumetric strain behavior, and contact force fabric during shearing were analyzed. It was observed that the number of crushed particles increased with the increase of the shear displacement and axial pressure and decreased with the particle strength increasing. Moreover, the shear strength and volume dilatancy were obviously decreased with particle crushing. The shear displacement of particles starting to crush was close to that corresponding to the peak shear stress got. Besides, the shear-hardening behavior was obviously affected by the number of crushed particles. A microanalysis showed that due to particle crushing, the contact forces and anisotropy decreased. The mechanism of the particle crushing effect on the shear strength was further clarified in terms of the particle friction and interlock.

Evaluation of interface shear strength between geosynthetics using three kinds of testing methods (다양한 시험법에 의한 토목섬유 사이의 접촉 전단 강도 평가)

  • Seo, Min-Woo;Park, Jun-Boum;Park, Inn-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.356-363
    • /
    • 2004
  • In this research, the shear behavior of four different interfaces consisting of 4 types of geosynthetics was examined, and both static and dynamic tests for the geosynthetic interface were conducted. The monotonic shear experiments were performed by using an inclined board apparatus and large direct shear device. The interface shear strength obtained from the inclined board tests were compared with those calculated from large direct shear tests. The comparison results indicated that direct shear tests are likely to overestimate the shear strength in low normal stress range where direct shear tests were not performed. Curved failure envelopes were also obtained for interface cases where two static shear tests were conducted. By comparing the friction angles measured from three tests, i.e. direct shear, inclined board, and shaking table tests, it was found that the friction angle might be different depending on the test method and normal stresses applied in this research. Therefore, it was concluded that the testing method should be determined carefully by considering the type of loads and the normal stress expected in the field.

  • PDF

Physical and Particle Flow Modeling of Shear Behavior of Non-Persistent Joints

  • Ghazvinian, A.;Sarfarazi, V.;Nejati, H.;Hadei, M.R.
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2011.09a
    • /
    • pp.3-21
    • /
    • 2011
  • Laboratory experiments and numerical simulations using Particle Flow Code (PFC2D) were performed to study the effects of joint separation and joint overlapping on the full failure behavior of rock bridges under direct shear loading. Through numerical direct shear tests, the failure process is visually observed and the failure patterns are achieved with reasonable conformity with the experimental results. The simulation results clearly showed that cracks developed during the test were predominantly tension cracks. It was deduced that the failure pattern was mostly influenced by both of the joint separation and joint overlapping while the shear strength is closely related to the failure pattern and its failure mechanism. The studies revealed that shear strength of rock bridges are increased with increasing in the joint separation. Also, it was observed that for a fixed cross sectional area of rock bridges, shear strength of overlapped joints are less than the shear strength of non-overlapped joints.

  • PDF

Comparison of Shear Behavior for Quarry Blasted Rocks Based on Large Scale Direct Shear Test and Large Scale Triaxial Test (대형직접전단시험과 대형삼축시험을 통한 석산골재의 전단거동 특성 비교)

  • Lee, Dae-Soo;Kim, Kyoung-Yul;Oh, Gi-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.5-14
    • /
    • 2008
  • Shear characteristics of quarry blasted rocks were compared using large scale direct shear tests and triaxial tests. For comparison purpose, similar test conditions were simulated as much as possible and three types of relative density (50%, 70%, 90%) were employed for the test. Results indicate that stress-strain behavior shows the same trend for two tests, but the measured shear strengths differ for the different test ms and depends on the relative density. At low relative density, the internal friction angles from direct shear test are smaller than those from triaxial tests. However, at high relative density, this phenomenon is reversed.