• Title/Summary/Keyword: direct printing method

Search Result 88, Processing Time 0.031 seconds

The Manufacture of Conductive paste for OTFT source & drain contacts Fabricated by Direct printing method (Direct Printing법에 의해 제작된 OTFT용 source & drain 전극용 전도성 페이스트 제조)

  • Lee, Mi-Young;Nam, Su-Yong;Kim, Seong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.384-385
    • /
    • 2006
  • We studied about conductive pastes of the source-drain contacts for OTFTs(organic thin-film transistors) fabricated by direct printing(screen printing) method. We used Ag and conductive carbon black powder as the conductive fillers of pastes. The conductive pastes were manufactured by various dispersing agents and dispersing conditions and source-drain contacts with $100{\mu}m$ of channel length were fabricated. We could obtain the OTFTs which exhibited different field-effect behaviors over a range of source-dram and gate voltages depending on a kind of conductive fillers used conductive pastes.

  • PDF

Characteristics of Fabricated MEA(Membrane Electrode Assembly) on Polymer Electrolyte Membrane Fuel Cell Made by the Screen Printing Method (스크린 프린팅법을 이용하여 제조된 고분자 전해질 연료전지에서 MEA(조합 막 전극)의 특성)

  • 임재욱;최대규;류호진
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.27-30
    • /
    • 2003
  • The effect of fabrication method of catalytic layer on electrode performance has been investigated. Brush, spray gun and screen printer were used as fabrication tool and catalytic layers were formed by several methods in screen printing. Direct screen printing on polymer membrane, screen printing on carbon paper, and their combined method were applied. In the electrode fabricated by the screen printing method, Pt loading of Pt/C catalysts could be cut down to 50%, compared with results by the brushing and spraying methods. The best result of electrode was obtained as 0.6 V, at 1 A/$\textrm{cm}^2$ when catalytic layer was formed by the combined way.

  • PDF

All-Organic Nanowire Field-Effect Transistors and Complementary Inverters Fabricated by Direct Printing

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.632-632
    • /
    • 2013
  • We generated single-crystal organic nanowire arrays using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. The position of the nanowires on complex structures is easy to adjust, because the mold is movable on the substrates before the polar liquid layer, which acts as an adhesive lubricant, is dried. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with twoor three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

Fabrication of Large-Scale Single-Crystal Organic Nanowire Arrays for High-Integrated Flexible Electronics

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.266.1-266.1
    • /
    • 2013
  • Large-scale single-crystal organic nanowire arrays were generated using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with two- or three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

One Step Fabrication of Organic Nanowires by using Direct Printing Method

  • Hwang, Jae.-K.;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.158-158
    • /
    • 2011
  • A wide range of techniques for the direct-printing of functional materials have been developed for the fabrication of micro- and nanoscale structures and devices. Here we report a new direct patterning method, liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sized as small as tens of nanometers over large areas up to 4". LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. The LB-nTM method was applied to the preparation of organic nanowire FETs on flexible substrates.

  • PDF

A Transformation of Image Density making a Method of Plate in Printing a Gravure (제판방식에 의해 구분된 Gravure 인쇄의 농도 변화)

  • Jun, Joon-Bae;Shin Joong-Soon;Kang, Young-Reep
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.2
    • /
    • pp.69-83
    • /
    • 2002
  • This research attempts on plate making for gravure. Direct Hard Dot Method, Helio Kliso Graph, and Laser TB Dot; these three method are the most popular in Korea. For examining ink transmission, three plates were made in the above three different way for the same manuscript and were printed under the same condition. After printing speed was also varied into 150line/inch, 175line/inch, and 200line/inch, ink transmission was examined too. After printing the same manuscript with the above three method then the researcher examined level of ink transmission. Printing lines shows that Laser TB Dot Method and Direct Hard Dot Method were favorable level, while there was big differences of state of Helio Kliso Graph plate.

  • PDF

High-Performance Single-Crystal Organic Nanowire Field-Effect Transistors of Indolocarbazole Derivatives

  • Park, Gyeong-Seon;Jeong, Jin-Won;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.368-368
    • /
    • 2012
  • We report solution-processed, high-performance single-crystal organic nanowire transistors fabricated from a novel indolocarbazole (IC) derivative. The direct printing process was utilized to generate single-crystal organic nanowire arrays enabling the simultaneous synthesis, alignment and patterning of nanowires using molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. These new molecules are particularly suitable for p-channel organic field-effect transistors (OFETs) because of the high level of crystallinity usually found in IC derivatives. Selected area diffraction (SAED) and X-ray diffraction (XRD) experiments on these solution-processed nanowires showed high crystallinity. Transistors fabricated with these nanowires gave a hole mobility as high as 1.0 cm2V-1s-1 with nanowire arrays with the direct printing process.

  • PDF

Fabrication of Organic Nanowire Electronics by Direct Printing Method

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.563-563
    • /
    • 2012
  • We report a one-step fabrication of single-crystal organic nanowire arrays on substrates using a new direct printing method (liquid-bridge-mediated nanotransfer moulding, LB-nTM), which can simultaneously enable the synthesis, alignment and patterning of the nanowires using molecular ink solutions. Two- or three-dimensional complex structures of various single-crystal organic nanowires were directly fabricated over a large area with a successive process. The position of the nanowires can be aligned easily on complex structures because the mold is movable on substrates before drying the polar liquid layer, which acts as an adhesive lubricant. This efficient manufacturing method can produce a wide range of optoelectronic devices and integrated circuits with single-crystal organic nanowires.

  • PDF

Cu Line Fabricated with Inkjet Printing Technology for Printed Circuit Board (잉크젯 인쇄 기술을 이용한 인쇄회로기판용 나노구리배선 개발)

  • Seo, Shang-Hoon;Lee, Ro-Woon;Yun, Kwan-Soo;Joung, Jae-Woo;Lee, Hee-Jo;Yook, Jong-Gwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1806-1809
    • /
    • 2008
  • Study that form micro pattern by direct ink jet printing method is getting attention recently. Direct ink jet printing spout fine droplet including nano metal particle by force or air pressure. There is reason which ink jet printing method is profitable especially in a various micro-patterning technology. It can embody patterns directly without complex process such as mask manufacture or screen-printing for existent lithography. In this study, research of a technology that ejects fine droplet form of Pico liter and forms metal micro pattern was carried with inkjet head of piezoelectricity drive system. Droplet established pattern while ejecting consecutively and move on the surface at the fixed speed. Patterns formed in ink are mixed with organic solvent and polymer that act as binder. So added thermal hardening process after evaporate organic solvent at isothermal after printing. I executed high frequency special quality estimation of CPW transmission line to confirm electrical property of manufactured circuit board. We tried a large area printing to confirm application possibility of an ink jet technology.

  • PDF

Liquid Bridge -Mediated Nanotransfer Molding : A New Direct Printing Method

  • Dang, Jeong-Mi;Jo, Bo-Ram;O, Hyeon-Seok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.85-85
    • /
    • 2010
  • We report a new direct printing method, called liquid-mediated nanotransfer molding (LB-nTM), that uses a polar liquid-mediated transfer process. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid- bridge between the stamp and the substrate. This procedure can be adopted in automated printing machines that generate various material patterns with a wide range of feature sizes (as small as 60 nm) on diverse substrates. The patterns have been investigated by scanning electron microscopy(SEM).

  • PDF