• Title/Summary/Keyword: direct methanol fuel cell

Search Result 224, Processing Time 0.026 seconds

Characterization of Direct Laser Melting Technology for the Fabrication of Fuel Cell Bipolar Plate (연료전지용 금속 분리판 제작을 위한 DLM공정 특성 연구)

  • Mun, S.M.;Jang, J.H.;Kim, T.H.;Lee, H.J.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • Manufacturing of the bipolar plate of a direct methanol fuel cell (DMFC) by direct laser melting technology (DLM) was attempted. The DLM technology is highly influenced by process parameters such as laser power, scan rate and layering height. Therefore, an analysis of the DLM technology was performed under various conditions. The bipolar plates were fabricated using the DLM process with 316L stainless steel (STS 316L) plates and powder. Powder melting trials at various energy density were performed in order to select a feasible melting range for a given laser power. The melting line height increases and eventually saturates when the energy density increases, but decreases when the laser power increases at a given energy density. For the estimation of the potential performance of the bipolar plate, the surface roughness and contact resistance of the DLM layer were also analyzed. The changes of line height and thickness are useful information to report when manufacturing bipolar plate of fuel cell through the DLM process.

Poly(vinyl alcohol) Membranes Containing Sulfonic Acid Groups for Direct Methanol Fuel Cell Application (설폰산기를 함유한 PVA막의 직접 메탄올 연료전지 응용)

  • Lee Young Moo;Lee Sun Yong
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.240-249
    • /
    • 2004
  • Crosslinked PVA membranes were achieved by esterification between the hydroxyl groups of PVA and carboxyl group of sulfosuccinic acid (SSA). SSA containing sulfonic group was used as a chemical crosslinking agent as well as a donor of fixed anionic group ($-SO_3$H). The crosslinking density of membranes was controlled by SSA content and calculated using polar and non-polar solvent. The crosslinking density measured by using non-polar solvent such as xylene and benzene increases with SSA content. However, using the polar solvent such as water and methanol, the crosslinking density increases up to SSA content of 20 wt% and above the content decrease due to sulfonic acid groups. The crosslinked PVA membranes were studied in relation with water diffusion coefficient and mechanical property as well as proton conductivity and methanol permeability as a function of crosslinking density. These properties were all dependent on the effect of SSA content.

Preparation and Characterization of $TiO_2$Filled Sulfonated Poly(ether ether ketone) Nanocomposite Membranes for Direct Methanol Fuel Cells

  • Kim Han-Joo;Kalappa Prashantha;Son Won-Keun;Park Jong-Eun;Oshaka Tetsuya;Kim Hyun-Hoo;Hong Ji-Sook;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.165-170
    • /
    • 2005
  • A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nanoparticle content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of the morphology, membranes are homogeneous and exhibit good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with the standard nafion membrane.

A Study on Thermoelectric Converter Using DMFC (Direct Methanol Fuel Cell) System (DMFC 시스템에 사용한 열전 변환기에 관한 연구)

  • Zhang, Jing-Liang;Moon, Chae-Joo;Chang, Young-Hak;Cheang, Eui-Heang;Kim, Tae-Gon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.92-94
    • /
    • 2007
  • This article describes a thermoelectric converter, which is powered by thermoelectric (TE) power modules. This system uses TE devices that directly convert heat energy to electricity to power a converter using direct methanol fuel ceil (DMFC) system. The characteristics of the TE module were tested at different temperatures. A boost BC-DC converter was designed and controlled by a power-supply controller chip. Efficiency of about 80% can be achieved and because the thermoelectric converter system has not moving parts and has a small volume, the system can be carried about easily and conveniently to supply portable electric equipment and this is very important for some mobile equipment.

  • PDF

Oxidation Characteristics of Methanol on Pt/C and Pt-Ru/C Catalyst for the Anode of Direct Methanol Fuel Cell (Pt/C 및 Pt-Ru/C 촉매를 사용한 직접 메탄올 연료전지 연료극의 메탄올 산화 반응 특성)

  • 정두환;이창형;신동열
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.35-43
    • /
    • 1998
  • Electrodes using for the anode electrode of direct methanol fuel cell with Pt/C and Pt/Ru/C catalyst were prepared and characterized by SEM, TEM, thermal analysis and electrochemical analysis. The half cell tests were carried out with 1 M $H_2SO_4$ electrolyte and 1 M $CH_3OH$ in order to evaluate the electrode performance. The employed electrochemical methods were cyclic vol-tammetry and potentiodynamic polarization experiments. It was found that 20 w% polytetrafluoroethylene (PTFE) content in catalyst showed the best performance due to the best platinum utilization on PTFE-containing catalyst layer. It was found that Pt/Ru/C binary catalyst inhibited the poisoning of anode electrode showing improved performance compared to the Pt/C catalyst by the adsorption of oxygen containing species on the electrode surface at same time. The apparent activation energy for methanol oxidation on the Pt/Ru/C and Pt/C catalyst layer was 11.60 kJ/mol and 26.85 kJ/mol, respectively.

  • PDF

I-V Characteristics of a Methanol Sensor for Direct Methanol fUel Cell(DMFC) as a Function of Deposited Platinum(Pt) Thickness (직접 메탄올 연료전지용 메탄올 센서의 백금 두께의 변화에 따른 전류-전압 특성 변화)

  • Yang, Jin-Seok;Kim, Seong-Il;Kim, Chun-Keun;Park, Jung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.49-53
    • /
    • 2007
  • The direct methanol fuel cell (DMFC) is a promising power source for portable applications due to many advantages such as simple construction, compact design, high energy density, and relatively high energy-conversion efficiency. In this work, an electrochemical methanol sensor for monitoring the methanol concentration in direct methanol fuel cells was fabricated using a thin composite nafion membrane as the electrolyte. We have analyzed the I-V characteristic of the fabricated methanol sensor as a function of methanol concentration, catalyst electrode and platinum(Pt) thickness. The fabricated sensor was analyzed by I-V measurement with various methanol concentration. When we measured the sensor characteristics with 10nm Pt and at 1V, the current value was $1.30{\times}10^{-6}A,\;1.96{\times}10^{-6}A\;and\;2.80{\times}10^{-6} A$ for three methanol concentration of 1M, 2M and 3M, respectively. When the methanol concentration was fixed at 2M, the current value of the fabricated device with Pt layers of 5, 10 and 15 nm thickness was $3.06{\times}10^{-6}A,\;1.96{\times}10^{-6}A\;and\;1.00{\times}10^{-6}A$, respectively. These results lead us to the conclusion that when the methanol concentration increases, the output current increases and when the catalyst electrode become thinner, the current increase more. It showed that, the thinner the catalyst electrode, the more electrochemistry become activation.

  • PDF