DOI QR코드

DOI QR Code

Characterization of Direct Laser Melting Technology for the Fabrication of Fuel Cell Bipolar Plate

연료전지용 금속 분리판 제작을 위한 DLM공정 특성 연구

  • 문성민 (부산대학교 기계공학부/정밀정형 및 금형가공 연구소) ;
  • 장정환 (부산대학교 기계공학부/정밀정형 및 금형가공 연구소) ;
  • 김태현 (부산대학교 기계공학부/정밀정형 및 금형가공 연구소) ;
  • 이현종 (부산대학교 기계공학부/정밀정형 및 금형가공 연구소) ;
  • 문영훈 (부산대학교)
  • Received : 2010.11.03
  • Accepted : 2010.11.29
  • Published : 2011.04.01

Abstract

Manufacturing of the bipolar plate of a direct methanol fuel cell (DMFC) by direct laser melting technology (DLM) was attempted. The DLM technology is highly influenced by process parameters such as laser power, scan rate and layering height. Therefore, an analysis of the DLM technology was performed under various conditions. The bipolar plates were fabricated using the DLM process with 316L stainless steel (STS 316L) plates and powder. Powder melting trials at various energy density were performed in order to select a feasible melting range for a given laser power. The melting line height increases and eventually saturates when the energy density increases, but decreases when the laser power increases at a given energy density. For the estimation of the potential performance of the bipolar plate, the surface roughness and contact resistance of the DLM layer were also analyzed. The changes of line height and thickness are useful information to report when manufacturing bipolar plate of fuel cell through the DLM process.

Keywords

References

  1. U. S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, 2004, Fuel Cell Hand Book (Seventh edition), EG&G Technical Services. Inc.
  2. J. P. Chio, K. S. Kim, Y. H. Seo, B. S. Ku, J. H. Jang, B. H. Kim, 2008, Development of Synthetic Jet Micro Air Pump, Trans. Metal. Process., Vol. 17, No. 8, pp. 594-599. https://doi.org/10.5228/KSPP.2008.17.8.594
  3. B. R. Padhy, R. G. Reddy, 2006, Performance of DMFC with SS 316 bipolar/end plates, J. Power Sources, Vol.153, No.1, pp. 125-129. https://doi.org/10.1016/j.jpowsour.2005.02.089
  4. B. Vandenbrouche, J. P. Kruth, 2007, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, J. Rapid Prototyping, Vol.13/4, pp. 196-203.
  5. K. A. Mumtaz, P. Erasenthiran, N. Hopkinson, 2008, High density selective laser melting of Waspaloy, J. Mater. Process. Technol., Vol. 195, pp. 77-87. https://doi.org/10.1016/j.jmatprotec.2007.04.117
  6. B. D. Joo, J. H. Jang, H. S. Yim, Y. M. Son, Y. H. Moon, 2009, Effect of Process Parameters on Forming Characteristics of Selective Laser Sintered Fe-Ni-Cr Powder, Trans. Metal. Process., Vol. 18, No.3, pp. 262-267. https://doi.org/10.5228/KSPP.2009.18.3.262
  7. I. Yadroitsev, Ph. Bertrand, I. Smurov, 2007, Parametric analysis of the selective laser melting process, Appl. Surf. Sci., Vol. 253, pp. 8064-8069. https://doi.org/10.1016/j.apsusc.2007.02.088
  8. A. Simuchi, F. Petzoldt, H. Pohl, 2001, Direct Metal Laser Sintering: Material Considerations and Mechanisms of Particle Bonding, Int. J. Powder Metall., Vol. 37, No. 2, pp. 49-61.
  9. D. Suman, 2003, Physical aspects of process control in selective laser sintering of metals, Adv. Eng. Mater, Vol. 5, No.10, pp. 701-711. https://doi.org/10.1002/adem.200310099

Cited by

  1. Experimental and Numerical Analyses of Flexible Forming Process for Micro Channel Arrays of Fuel Cell Bipolar Plates vol.21, pp.8, 2012, https://doi.org/10.5228/KSTP.2012.21.8.499