• Title/Summary/Keyword: direct limit

Search Result 474, Processing Time 0.025 seconds

A Study on a Performance Analysis of Direct-Conversion Receiver In Additive White Gaussian Noise Channel (AWGN 채널환경에서 Direct-Conversion 수신기의 성능분석에 관한 연구)

  • 조형래;김철성;박성진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.668-675
    • /
    • 2001
  • Recently, the performance of the commercial PCS(Personal Communication Service) system has been improved to the uppermost limit and ultimately the next generation mobile communication is to be realized by IMT-2000 (International Mobile Communication-2000) to provide multimedia services. Therefore, the new type receiving system is researched actively and one of the most important part in a receiver is direct conversion method. The direct conversion method is suitable for low power consumption, small size, MMIC, and low price, which is to be adopted to the next generation mobile communication systems. In this case, however, several problems occur due to DC-offset. The DC-offset suppresses amplification of the required signal because of the leakage signal of frequency synthesizer in the system. In this thesis, the removing method of DC-offset was considered. There are four removing techniques of DC-offset, which are AC-coupling, large capacitor, DC-feedback loop, and DC-free coding. Among these, the AC-coupling method is the most simplest method and the DC-feedback loop method has the best performance. Then, the performance of the AC-coupling method and DC-feedback loop method are evaluated by HP's ADS simulation tool. As a result, the AC-coupling method cannot be used to the digital communication systems due to data loss. On the other hand, it was confirmed that the DC-feedback loop method is suitable for the direct conversion receiver.

  • PDF

Brief Review on Exposure Characteristics, Monitoring Instruments and Threshold Limit Values for Extremely Low Frequency-Magnetic Field (ELF-MF) (직업성 극저주파 자기장 노출평가와 노출 기준에 대한 쟁점 고찰)

  • Dong-Uk, Park;Seunghee, Lee;Kyung Ehi, Zoh
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.381-392
    • /
    • 2022
  • Objectives: Objective of this study is to review briefly exposure characteristics, monitoring instruments and threshold limit values for extremely low frequency-magnetic field (ELF-MF) methods. This study was undertaken through brief literature review. We performed a literature search in PubMed to identify ELF-MF studies conducted in workplaces. Initial search keywords such as 'extremely low frequency-magnetic field (ELF-MF)' and 'electromagnetic fields (EMF)' combined or singly. We limited our review to occupational rather than general nonworkplace environmental exposures. Methods: The contents we reviewed: key industry and occupations generating ELF-MF, several direct-reading instruments monitoring ELF-MF and threshold limit values (TLV) preventing health effects may be caused by the exposure to ELF-MF. Results: The industries related to the generation and supply of electricity, electrolytic installations, welding, and induction heating and more were regarded as high ELF-MF exposure industries. All jobs handling or employed performed in power cable lines, electrical wiring, and electrical equipment are found to be exposed to ELF-MF. Threshold or ceiling limit, 1,000 µT, is established to prevent acute effects of exposure to low-frequency EMFs on the nervous system: the direct stimulation of nerve and muscle tissues and the induction of retinal phosphenes. The International Agency for Research on Cancer (IARC) has classified ELF-MF as possibly carcinogenic to humans chiefly based on epidemiological studies on childhood leukemia. However, a causal relationship between magnetic fields and several types of cancer including childhood leukemia has not been established nor has any other long-term effects. Risk management using precautionary measures, has been initiated by the US and EU to prevent chronic health effects related to ELF-MF exposure in workplaces. Conclusion: This study recommends the implementation of various measures such as theestablishment of occupational exposure limit values for ELF-MF and precautionary principle to prevent potential chronic occupational health effects may be caused by ELF-MF in Korea.

INJECTIVE MODULES OVER ω-NOETHERIAN RINGS, II

  • Zhang, Jun;Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1051-1066
    • /
    • 2013
  • By utilizing known characterizations of ${\omega}$-Noetherian rings in terms of injective modules, we give more characterizations of ${\omega}$-Noetherian rings. More precisely, we show that a commutative ring R is ${\omega}$-Noetherian if and only if the direct limit of GV -torsion-free injective R-modules is injective; if and only if every R-module has a GV -torsion-free injective (pre)cover; if and only if the direct sum of injective envelopes of ${\omega}$-simple R-modules is injective; if and only if the essential extension of the direct sum of GV -torsion-free injective R-modules is the direct sum of GV -torsion-free injective R-modules; if and only if every $\mathfrak{F}_{w,f}(R)$-injective ${\omega}$-module is injective; if and only if every GV-torsion-free R-module admits an $i$-decomposition.

Digital Dynamic Compensation Methods of Rhodium Self-Powered Neutron Detector (로듐 자기출력형 중성자 계측기의 디지탈 동적 보상방법)

  • Auh, Geun-Sun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.205-211
    • /
    • 1994
  • The best method is selected among the 3 digital dynamic compensation methods which are developed or applied for the Rhodium self-powered neutron detector. The three digital dynamic compensation methods are the existing Dominant Pol Tustin method of the COLSS(Core Operating Limit Supervisory System), the Direct Inversion method and Kalman Filter method. The Direct Inversion method is an improved method of D. Hoppe and R. Maletti and the Kalman Filter method is developed using the Kalman Filter. Response times of the compensated signals to achieve 90% of a step input are 28.1, 17.2 and 6.5 seconds respectively for the same noise gain telling that the Kalman Filter method is the best amens the 3 methods.

  • PDF

Hopping Robot Using Direct-drive Method and Thermal Modeling to Analyze Motor Limitation (Direct-drive를 활용한 소형 연속 도약 로봇 및 DC모터의 열 모델을 통한 한계 분석)

  • Myeongjin Jang;Seongyo Yang;Gwang-Pil Jung
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.53-57
    • /
    • 2024
  • A hopping robot can move through a confined environment while overcoming obstacles. To create a small hopping robot, it must be able to generate a large amount of energy and release it at the same time. However, due to the small size of the robot, there is a limit to the size of the actuator that can be used, so it is mainly used to collect energy in an elastic element and release it at once. In this paper, we propose a small hopping robot with a simplified design by removing ancillary parts and enabling continuous hopping using only a small actuator based on a direct-drive method. In addition, repeated actuation over the rated voltage can cause thermal breakdown of the actuator. To check the safety of the actuator at high voltage, we perform modeling to predict the temperature of the actuator and verify the accuracy of the modeling through experiments.

Maximum axial load level and minimum confinement for limited ductility design of high-strength concrete columns

  • Lam, J.Y.K.;Ho, J.C.M.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.357-376
    • /
    • 2009
  • In the design of concrete columns, it is important to provide some nominal flexural ductility even for structures not subjected to earthquake attack. Currently, the nominal flexural ductility is provided by imposing empirical deemed-to-satisfy rules, which limit the minimum size and maximum spacing of the confining reinforcement. However, these existing empirical rules have the major shortcoming that the actual level of flexural ductility provided is not consistent, being generally lower at higher concrete strength or higher axial load level. Hence, for high-strength concrete columns subjected to high axial loads, these existing rules are unsafe. Herein, the combined effects of concrete strength, axial load level, confining pressure and longitudinal steel ratio on the flexural ductility are evaluated using nonlinear moment-curvature analysis. Based on the numerical results, a new design method that provides a consistent level of nominal flexural ductility by imposing an upper limit to the axial load level or a lower limit to the confining pressure is developed. Lastly, two formulas and one design chart for direct evaluation of the maximum axial load level and minimum confining pressure are produced.

A Study on the Stability Evaluation of Soil Slope according to inclination of upper Natural Slope (상부자연사면 경사에 따른 토사사면의 안정성 평가에 관한 연구)

  • Lee, Jeong-Yeob;Kim, Jin-Hwan;Lee, Jong-Hyun;Gu, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.580-585
    • /
    • 2004
  • The purpose of this study is the stability evaluation of soil slope according to inclination of upper natural slope. Upper natural slope breeds loss of slope by inflow in slope of surface water by rainfal1 and f1uctuation of amount of materials in slope through method of cutting slope according to degree of inclination. Basis of standard inclination does not consider of inclination of upper natural slope and is presented uniformly. Therefore, in this study, analyzed stability of inclination of upper natural slope through limit equilibrium analysis. Result is same as following. First, safety factor through limit equilibrium analysis is almost direct decrease when gradient of soil slope is 1:1.2, 1:1.5. However, when gradient of soil slope is 1:1.0, 1:0.7, if sinclination of upper natural slope are $20^{\circ}$, it shows tendency that decrease of safety factor becomes low rapidly. Second, when when gradient of soil slope is fixed, inclination of upper natural slope increase tendency(maximum 3.0 times) that decrease of safety factor.

  • PDF

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.

Seismic lateral earth pressure analysis of retaining walls

  • Ismeik, Muhannad;Shaqour, Fathi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.523-540
    • /
    • 2015
  • Based on limit equilibrium principles, this study presents a theoretical derivation of a new analytical formulation for estimating magnitude and lateral earth pressure distribution on a retaining wall subjected to seismic loads. The proposed solution accounts for failure wedge inclination, unit weight and friction angle of backfill soil, wall roughness, and horizontal and vertical seismic ground accelerations. The current analysis predicts a nonlinear lateral earth pressure variation along the wall with and without seismic loads. A parametric study is conducted to examine the influence of various parameters on lateral earth pressure distribution. Findings reveal that lateral earth pressure increases with the increase of horizontal ground acceleration while it decreases with the increase of vertical ground acceleration. Compared to classical theory, the position of resultant lateral earth force is located at a higher distance from wall base which in turn has a direct impact on wall stability and economy. A numerical example is presented to illustrate the computations of lateral earth pressure distribution based on the suggested analytical method.

The Influence of Combustor Atmospheric Pressure on Flame Characteristics (연소실 분위기 압력이 화염형상에 미치는 영향)

  • Kim, J.R.;Choi, G.M.;Kim, D.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1134-1139
    • /
    • 2004
  • Recently, development of flame control scheme has been hot issues in the combustion engineering. It has been held that flame shape can be controllable by pressure inside combustor. The influence of combustor atmospheric pressure on flame shape was investigated in the present study. The flame shape, flammable limit, flame temperature and nitric oxide emission were measured as functions of combustor atmospheric pressure and equivalence ratio. The reaction region became longer and wider with decreasing combustor atmospheric pressure by direct photography, hence reduction of blow off limit. This tendency was also observed in the mean flame temperature distribution. Nitric oxide emission decreased with decreasing combustor atmospheric pressure. Low NOx combustion is ascribed to wide-spread reaction region in the low atmospheric pressure condition. These results demonstrate that flame shape and nitric oxide emission can be controllable with combustor atmospheric pressure.

  • PDF