• Title/Summary/Keyword: direct current motor

Search Result 290, Processing Time 0.026 seconds

Design of BLDC Motor Controller for Electric Power Wheelchair

  • Chu, Jun-Uk;Moon, In-Hyuk;Choi, Gi-Won;Ryu, Jei-Cheong;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1509-1512
    • /
    • 2003
  • The electric power wheelchair needs to control motor torque and speed for responding to variable actions given by handling a joystick. In this paper a DSP-based BLDC motor controller using a single dc-link current sensor is presented for electric power wheelchair. It is composed by a DSP processor and three-phase inverter module. To control torque, high speed current control is achieved by the PI controller and pulse width modulation (PWM) signals with 25 kHz carrier frequency, which is performed by 200 ${\mu}sec$ cycle. The speed controller computes the new direct current reference from the speed error and the PI control equation. The displacement value by handling the joystick is converted to reference speeds of right and left wheel motors using nonholonomic wheelchair kinematics. Experimental results show that the presented control system is enough to implement a speed servo in wheelchair driving.

  • PDF

Vector Control for the Rotor Resistance Compensation of Induction Motor (유도전동기 회전자 저항 보상을 위한 벡터제어)

  • 박현철;이수원;김영민;황종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

A Study on the Optimal Efficiency Drive of a Direct-Current Motor (직류전동기의 고효율화 우\ulcorner에 관한 연구)

  • Hong, Soon-Chan
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.7
    • /
    • pp.25-30
    • /
    • 1982
  • This paper considered the energy saving problem of D.C. motor in arbitrary load condition. We can improve efficiency by maintaining the proper ratio of armature current/field current. First, the condition of maximizing the efficiency was obtained, and then the real time control was implemented by using microprocessors. As a result, the efficiency was improved in spite of constant output. For example, the efficiency at 1/5 load was improved from 56.7% to 80%.

  • PDF

An Instrument Fault Diagnosis Scheme for Direct Torque Controlled Induction Motor Driven Servo Systems (직접토크제어 유도전동기 구동 서보시스템을 위한 장치고장 진단 기법)

  • Lee, Kee-Sang;Ryu , Ji-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.241-251
    • /
    • 2002
  • The effect of sensor faults in direct torque control(DTC) based induction motor drives is analyzed and a new Instrument fault detection isolation scheme(IFDIS) is proposed. The proposed IFDIS, which operated in real-time, detects and isolates the incipient fault(s) of speed sensor and current sensors that provide the feedback information. The scheme consists of an adaptive gain scheduling observer as a residual generator and a special sequential test logic unit. The observer provides not only the estimate of stator flux, a key variable in DTC system, but also the estimates of stator current and rotor speed that are useful for fault detection. With the test logic, the IFDIS has the functionality of fault isolation that only multiple estimator based IFDIS schemes can have. Simulation results for various type of sensor faults show the detection and isolation performance of the IFDIS and the applicability of this scheme to fault tolerant control system design.

Feed-Forward Approach in Stator-Flux-Oriented Direct Torque Control of Induction Motor with Space Vector Pulse-Width Modulation

  • Kizilkaya, Muhterem Ozgur;Gulez, Kayhan
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.994-1003
    • /
    • 2016
  • Two major obstacles in the utilization of electrical vehicles are their price and range. The collaboration of direct torque control (DTC) with induction motor (IM) is preferred for its low cost, easy implementation, and parameter independency. However, in terms of edges, the method has drawbacks, such as variable switching frequency and undesired current harmonic distortion. These drawbacks result in acoustic noise, reduced efficiency, and electromagnetic interference. A feed-forward approach for stator-flux-oriented DTC with space vector pulse-width modulation is presented in in this paper. The outcome of the proposed method is low current harmonic distortion with fixed switching frequency while preserving the torque performance and simple application feature of basic DTC. The method is applicable to existing and forthcoming IM drive systems via software adaptation. The validity of the proposed method is confirmed by simulation and experimental results.

Effect of Transcranial Direct Current Stimulation on Movement Variability in Repetitive - Simple Tapping Task

  • Kwon, Yong Hyun;Cho, Jeong Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Purpose: Accuracy and variability of movement in daily life require synchronization of muscular activities through a specific chronological order of motor performance, which is controlled by higher neural substrates and/or lower motor centers. We attempted to investigate whether transcranial direct current stimulation (tDCS) over primary sensorimotor areas (SM1) could influence movement variability in healthy subjects, using a tapping task. Methods: Twenty six right-handed healthy subjects with no neurological or psychiatric disorders participated in this study. They were randomly and equally assigned to the real tDCS group or sham control group. Direct current with intensity of 1 mA was delivered over their right SM1 for 15 minutes. For estimation of movement variability before and after tDCS, tapping task was measured, and variability was calculated as standard deviation of the inter-tap interval (SD-ITI). Results: At the baseline test, there was no significant difference in SD-ITI between the two groups. In two-way ANOVA with repeated measurement no significant differences were found in a large main effect of group and interaction effect between two main factors (i.e., group factor and time factor (pre-post test)). However, significant findings were observed in a large main effect of the pre-post test. Conclusion: Our findings showed that the anodal tDCS over SM1 for 15 minutes with intensity of 1 mA could enhance consistency of motor execution in a repetitive-simple tapping task. We suggest that tDCS has potential as an adjuvant brain facilitator for improving rhythm and consistency of movement in healthy individuals.

Position and Speed Control of the BLDC Motor based on the Back-stepping(Gain design) (백스텝핑을 기반으로 하는 BLDC 전동기의 위치 및 속도제어(이득 설정))

  • Lee, Seung;Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.403-411
    • /
    • 2015
  • In this paper, we propose a design method for the position and speed controller, current control of a Brushless Direct Current(BLDC) motor using back-stepping design techniques. Further, to stabilize the whole system, and proposes a method for setting the appropriate gain control to improve the tracking performance. By applying the proposed controller to 120W BLDC motors were tested for the ability to follow the position, velocity and current reference. Since the simulation results of the steady state error is within 1%, we were able to show the usefulness of the tracking performance of the proposed controller.

An Enhanced Finite-Settling-Step Direct Torque and Flux Control (FSS-DTFC) for IPMSM Drives

  • Kim, Sehwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1367-1374
    • /
    • 2016
  • This paper presents a discrete-time version of voltage and current limited operation using an enhanced direct torque and flux control method for interior permanent magnet synchronous motor (IPMSM) drives. A command voltage vector for airgap torque and stator flux regulation can be uniquely determined by the finite-settling-step direct torque and flux control (FSS-DTFC) algorithm under physical constraints. The proposed command voltage vector trajectories can be developed to achieve the maximum inverter voltage utilization for the discrete-time current limit (DTCL)-based FSS-DTFC. The algorithm can produce adequate results over a number of the potential secondary upsets found in the steady-state current limit (SSCL)-based DTFC. The fast changes in the torque and stator flux linkage improve the dynamic responses significantly over a wide constant-power operating region. The control strategy was evaluated on a 900W IPMSM in both simulations and experiments.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

Implemention of a DTIF Controller for Robust Drive of a 3 Phase Induction Motor in High-Speed Elevator (고속 엘리베이터에서 3상 유도전동기의 강건한 구동을 위한 DTIF 제어기의 구현)

  • 김동진;강창수;한완옥
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.3
    • /
    • pp.88-96
    • /
    • 1995
  • High speed elevator requires precise drive included in zero speed at start/stop drive for the high stability and controllability. The vector control techniques, which have been used for the precise operation of induction motor, can be divided into two classes; The indirect vector control by slip frequency and the direct vector control by field orientation. The existing direct vector control technique has a robustness against the change of motor parameter and the existing indirect vector control technique has a strength of control ability in the wide speed range comparatively. This study presents the DTIF (Direct Torque Indirect Flux) controller which has robust movement in the transition state and in about zero and low speed using the control technique in which torque is controlled by the direct vector technique and flux is controled by indirect vector technique. The proposed system is verified by simulation and experiment for driving 3 phase induction motor. The process of transition which is from about zero speed and low speed to high speed is compared and measured to specification of phase voltage, phase current and DC link current. It is verified that DTIF controller show robust and stable speed variation.

  • PDF