• 제목/요약/키워드: direct contact membrane distillation (DCMD)

검색결과 21건 처리시간 0.021초

직접접촉식과 동반기체식 막증류 공정의 투과수 변화에 따른 비교해석 (Permeate Flux Analysis of Direct Contact Membrane Distillation (DCMD) and Sweep Gas Membrane Distillation (SGMD))

  • 엄수환;;이용택
    • 멤브레인
    • /
    • 제21권3호
    • /
    • pp.236-246
    • /
    • 2011
  • 본 연구에서는 기공의 크기가 $0.4{\mu}m$의 소수성 막인 폴리에틸렌 100가닥으로 모듈을 제작하여 직접접촉식과 동반기체식 막증류 과정에서 막의 양단의 온도차, 공급수의 염분농도, 그리고 냉각수/동반기체의 유량에 대해서 투과수의 플럭스를 측정하였다. 이론적으로는, 동반기체식 막증류는 직접접촉식 막증류 공정의 막의 투과측 표면과 냉각수 사이에 동반 기체층이 추가된 것으로 간주하였다. 이 동반기체층은 새로운 저항층과과 동반기체의 이동중 상변화된 수증기가 손실되는 것이 투과유속을 30% 정도 감소시키게 된다. 물질수지식을 이용하여, 기존의 식과는 다르게 보정계수(${\omega}$)를 넣어 직접접촉식 막증류와 동반기체식 막증류의 이론값을 실험값과 비교 분석하였다.

Numerical study of direct contact membrane distillation process: Effects of operating parameters on TPC and thermal efficiency

  • Zamaniasl, Mohammadmehdi
    • Membrane and Water Treatment
    • /
    • 제10권5호
    • /
    • pp.387-394
    • /
    • 2019
  • Membrane distillation (MD) is one of the water treatment processes which involves the momentum, heat and mass transfer through channels and membrane. In this study, CFD modeling has been used to simulate the heat and mass transfer in the direct contact membrane distillation (DCMD). Also, the effect of operating parameters on the water flux is investigated. The result shows a good agreement with the experimental result. Results indicated that, while feed temperature is increasing in the feed side, water flux improves in the permeate side. Since higher velocity leads to the higher mixing and turbulence in the feed channel, water flux rises due to this increase in the feed velocity. Moreover, results revealed that temperature polarization coefficient is rising as flow rate (velocity) increases and it is decreasing while the feed temperature increases. Lastly, the thermal efficiency of direct contact membrane distillation is defined, and results confirm that thermal efficiency improves while feed temperature increases. Also, flow rate increment results in enhancement of thermal efficiency.

Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • 제7권1호
    • /
    • pp.71-86
    • /
    • 2016
  • The present study deals with a numerical simulation for the transport phenomena in three configurations of Membrane Distillation (Air Gap, Direct Contact and Sweeping Gas Membrane Distillation) usually used for desalination in order to make an objective comparison between them under the same operating conditions. The models are based on the conservation equations for the mass, momentum, energy and species within the feed saline and cooling solutions as well as on the mass and energy balances on the membrane sides. The theoretical model was validated with available data and was found in good agreement. DCMD configuration provided the highest pure water production while SGMD shows the highest thermal efficiency. Process parameters' impact on each configuration are also presented and discussed.

직접 접촉식 막 증발공정에서 무기 막오염 특성 분석 및 저감방법 (Inorgainc fouling and it fouling reduction in direct contact membrane distillation process)

  • 이태민;김승현
    • 상하수도학회지
    • /
    • 제34권2호
    • /
    • pp.115-125
    • /
    • 2020
  • This study was aimed to examine inorganic fouling and fouling reduction method in direct contact membrane distillation(DCMD) process. Synthetic seawater of NaCl solution with CaCO3 and CaSO4 was used for this purpose. It was found in this study that both CaCO3 and CaSO4 precipitates formed at the membrane surface. More fouling was observed with CaSO4(anhydrite) and CaSO4·0.5H2O(bassanite) than CaSO4·2H2O(gypsum). CaCO3 and gypsum were detected at the membrane surface when concentrates of SWRO(seawater reverse osmosis) were treated by the DCMD process, while gypsum was found with MED(multi effect distillation) concentrates. Air backwash(inside to out) was found more effective in fouling reduction than air scouring.

Performance improvement of membrane distillation using carbon nanotubes

  • Kim, Seung-Hyun;Lee, Tae-Min
    • Membrane and Water Treatment
    • /
    • 제7권4호
    • /
    • pp.367-375
    • /
    • 2016
  • Although the bucky paper (BP) made from carbon nanotubes (CNTs) possesses beneficial characteristics of hydrophobic nature and high porosity for membrane distillation (MD) application, weak mechanical strength of BP has often prevented the stable operation. This study aims to fabricate the BP with high mechanical strength to improve its MD performance. The strategy was to increase the purity level of CNTs with an assumption that purer CNTs would increase the Van der Waals attraction, leading to the improvement of mechanical strength of BP. According to this study results, the purification of CNT does not necessarily enhance the mechanical strength of BP. The BP made from purer CNTs demonstrated a high flux ($142kg/m^2{\cdot}h$) even at low ${\Delta}T$ ($50^{\circ}C$ and $20^{\circ}C$) during the experiments of direct contact membrane distillation (DCMD). However, the operation was not stable because a crack quickly formed. Then, a support layer of AAO (anodic aluminum oxide) filter paper was introduced to reinforce the mechanical strength of BP. The support reinforcement was able to increase the mechanical strength, but wetting occurred. Therefore, the mixed matrix membrane (PSf-CNT) using CNTs as filler to polysulphone was fabricated. The DCMD operation with the PSf-CNT membrane was stable, although the flux was low ($6.1kg/m^2{\cdot}h$). This result suggests that the mixed matrix membrane could be more beneficial for the stable DCMD operation than the BP.

셰일가스 플랜트 용수 처리를 위한 직접 접촉 막 증발법 적용 가능성 연구 (A Feasibility Study on Shale Gas Plant Water Treatment by Direct Contact Membrane Distillation)

  • 구재욱;한지희;이상호;홍승관
    • 한국유체기계학회 논문집
    • /
    • 제16권1호
    • /
    • pp.56-60
    • /
    • 2013
  • Non-conventional oil resources such as shale gas are becoming increasingly important and have drawn the attention of several major oil companies all over the world. Nevertheless, the market-changing growth of shale gas production in recent years has resulted in the emergence of environmental and water management challenges. This is because the water used in the hydraulic fracturing process contains large amount of pollutants including ions, organics, and particles. Accordingly, the treatment of this flowback water from shale gas plant is regarded as one of the key technologies. In this study, we examined the feasibility of membrane distillation as a treatment technology for the water from shale gas plants. Direct contact membrane distillation (DCMD) is a thermally-driven process based on a vaper pressure gradient across a hydrophobic membrane, allowing the treatment of feed waters containing high concentration of ions. Experiments were carried out put in the lab-scale under various conditions such as membrane types, temperature difference, flow rate and so on. Synthetic feed water was prepared and used based on the data from literature. The results indicated that DCMD is suitable for treating not only low-range flowback water but also high-range flowback water. Based on the theoretical calculation, DCMD could have over 80% of recovery. Nevertheless, organic pollutants such as oil and surfactant were identified as serious barriers for the application of MD. Further works will be required to develop the optimum pretreatment for this MD process.

막 증발법을 이용한 셰일가스 폐수 처리 가능성 평가 (Feasibility study on shale gas wastewater treatment using membrane distillation)

  • 조형락;최용준;이상호
    • 상하수도학회지
    • /
    • 제30권4호
    • /
    • pp.441-447
    • /
    • 2016
  • Development of shale gas has drawn increasing attention since it is one of promising alternative energy resources. However, contamination of groundwater and surface water during the extraction of shale gas is becoming a serious environmental issues, which brings the needs to treat wastewater generated from hydraulic fracking. In this study, the feasibility of membrane distillation (MD) for the treatment of shale gas wastewater was investigated using a laboratory scale experimental setup. Flat-sheet MD membranes were used to treat produced water from a shale gas well in the United States. Different configurations such as direct contact MD (DCMD) and air gap MD (AGMD) were compared in terms of flux and fouling propensity. The foulants on the surface of the membranes were examined. The results suggest that MD can treat the shale gas produced water containing more than 200,000 mg/L of total dissolved solids, which is impossible by other technologies such as reverse osmosis (RO) and forward osmosis (FO). In this study, we investigated the possibility of processing and characterization of shale gas produce wastewater using membrane distillation. Laboratory scale membrane distillation experimental device was developed. It was compared the flat-sheet direct contact membrane distillation and flat-sheet air gap membrane distillation. AGMD flux in lower than the flux of DCMD, it was expected that the contamination caused by organic matters.

Optimization of three small-scale solar membrane distillation desalination systems

  • Chang, Hsuan;Hung, Chen-Yu;Chang, Cheng-Liang;Cheng, Tung-Wen;Ho, Chii-Dong
    • Membrane and Water Treatment
    • /
    • 제6권6호
    • /
    • pp.451-476
    • /
    • 2015
  • Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving the energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum-cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo steady state approach for equipment sizing and the dynamic optimization using overall system mathematical models. The s-SMDDS employing three MD configurations, including the air gap (AGMD), direct contact (DCMD) and vacuum (VMD) types, are optimized. The membrane area of each system is $11.5m^2$. The AGMD system operated for 500 kg/day water production rate gives the lowest unit cost of $5.92/m^3$. The performance ratio and recovery ratio are 0.85 and 4.07%, respectively. For the commercial membrane employed in this study, the increase of membrane mass transfer coefficient up to two times is beneficial for cost reduction and the reduction of membrane heat transfer coefficient only affects the cost of the DCMD system.

Evaluation of the efficiency of cleaning method in direct contact membrane distillation of digested livestock wastewater

  • Kim, Sewoon;Park, Ki Young;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • 제8권2호
    • /
    • pp.113-123
    • /
    • 2017
  • This study investigated effects of physical and chemical cleaning methods on the initial flux recovery of fouled membrane in membrane distillation process. A laboratory scale direct contact membrane distillation (DCMD) experiment was performed to treat digested livestock wastewater with 3.89 mg/L suspended solids, 874.7 mg/L COD, 543.7 mg/L nitrogen, 15.6 mg/L total phosphorus, and pH of 8.6. A hydrophobic PVDF membrane with an average pore size of $0.22{\mu}m$ and a porosity of 75 % was installed inside a direct contact type membrane distillation module. The temperature difference between feed and permeate side was maintained at $40^{\circ}C$ with the feed and permeate stream velocity of 0.18 m/s. The results showed that the permeate flux decreased from $22.1L{\cdot}m^{-2}{\cdot}hr^{-1}$ to $19.0L{\cdot}m^{-2}{\cdot}hr^{-1}$ after 75 hours of distillation. The fouled membrane was cleaned first by physical flushing and consecutively by chemicals with NaOCl and citric acid. After the physical cleaning the flux was recovered to 92 % as compared with the initial clean water flux of the virgin membrane. Then 94 % of the flux was recovered after cleaning by 2,000 ppm NaOCl for 90 minutes and finally 97 % of flux recovered after 3 % citric acid for 90 minutes. SEM-EDS and FT-IR analysis results presented that the foulants on the membrane surface were removed effectively after each cleaning step. The contact angle measurement showed that the hydrophobicity of the membrane surface was also restored gradually after each cleaning step to reach nearly the same hydrophobicity level as the virgin membrane.

Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination

  • Sandid, Abdelfatah Marni;Neharia, Driss;Nehari, Taieb
    • Membrane and Water Treatment
    • /
    • 제13권5호
    • /
    • pp.235-243
    • /
    • 2022
  • The paper presents the effect of operating temperatures and flow rates on the distillate flux that can be obtained from a hydrophobic membrane having the characteristics: pore size of 0.15 ㎛; thickness of 130 ㎛; and 85% porosity. That membrane in the present investigation could be the direct contact (DCMD) or the air-gap membrane distillation (AGMD). To model numerically the membrane distillation processes, the two-dimensional computational fluid dynamic (CFD) is used for the DCMD and AGMD cases here. In this work, DCMD and AGMD models have been validated with the experimental data using different flows (Parallel and Counter-current flows) in non-steady-state situations. A good agreement is obtained between the present results and those of the experimental data in the literature. The new approach in the present numerical modeling has allowed examining effects of the nature of materials (Polyvinylidene fluoride (PVDF) polymers, copolymers, and blends) used on thermal properties. Moreover, the effect of the area surface of the membrane (0.021 to 3.15 ㎡) is investigated to explore both the laminar and the turbulent flow regimes. The obtained results found that copolymer P(VDF-TrFE) (80/20) is more effective than the other materials of membrane distillation (MD). The mass flux and thermal efficiency reach 193.5 (g/㎡s), and 83.29 % using turbulent flow and an effective area of 3.1 ㎡, respectively. The increase of feed inlet temperatures and its flow rate, with the reduction of cold temperatures and its flow rate are very effective for increasing distillate water flow in MD applications.