• Title/Summary/Keyword: direct adaptive fuzzy control

Search Result 45, Processing Time 0.027 seconds

Direct Torque Control of Squirrel Cage Typed Induction Motor Using Fuzzy Controller (퍼지제어기를 이용한 농형 유도 전동기의 직접 토크제어)

  • Han, Sang-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.122-129
    • /
    • 2008
  • The direct torque control method of an inverter fed squirrel cage typed induction motor using fuzzy logic controller has been proposed. This method is suitable for the traction which requires a fast torque response during the star-up and step change. The fuzzy control algorithm based upon the control principles of conventional DSC(Direct Self Controller) is developed. The fuzzy algorithm is tarried out by defuzzification strategy of the fuzzy output extracted from the possibility distribution of an inferred fuzzy control rule. The flux and torque of an induction motor are estimated by the dynamic model of the rotor flux field-oriented scheme which has decoupling characteristics and excellent dynamic response over a wide speed range. The proposed controller shows a good dynamic response. Moreover, since the fuzzy controller possesses highly adaptive capability, the performance of fuzzy controller is quite robust and insensitive to the motor parameters and change of operation conditions.

Design of Combined Direct/Indirect Adaptive Neural Control System using Fuzzy Rule (퍼지규칙에 의한 직/간접 혼합 신경망 적응제어시스템의 설계)

  • Jang, Soon-Ryong;Choi, Jae-Seok;Lee, Soon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.724-727
    • /
    • 1999
  • In this paper, the direct and indirect neural adaptive controller are combined based on the Lyapunov synthesis approach. The proposed adaptive controller is constructed from RBF neural network and a set of fuzzy IF-THEN rules. And the weighting parameters are adjusted on-line according to some adaptation law for the purpose of controlling the plant to track a given trajectory. In this scheme, fuzzy IF-THEN rules are used to decide the combined weighting factor. It is shown that all the signals in the closed-loop system are uniformly bounded under mild assumptions. The effectiveness of the proposed control scheme is demonstrated through the control of one-link rigid robotics manipulator.

  • PDF

Adaptive Anti-Sway Trajectory Tracking Control of Overhead Crane using Fuzzy Observer and Fuzzy Variable Structure Control (퍼지 관측기와 퍼지 가변구조제어를 이용한 천정주행 크레인의 적응형 흔들림 억제 궤적추종제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.452-461
    • /
    • 2007
  • Adaptive anti-sway and trajectory tracking control of overhead crane is presented, which utilizes Fuzzy Uncertainty Observer(FUO) and Fuzzy based Variable Structure Control(FVSC). We consider an overhead crane system which can be decoupled into the actuated and unactuated subsystems with its own lumped uncertainty such as parameter uncertainties and external disturbance. First, a new method for anti-sway control using FVSC is proposed to improve the conventional method based on Lyapunov direct method, while a conventional trajectory tracking control law using feedback linearization is directly adopted. Second, FUO is designed to estimate one of the two lumped uncertainties which can compensate both of them, based on the fact that two lumped uncertainties are coupled with each other. Then, an adaptive anti-sway control is proposed by incorporating the proposed FVSC and FUO. Under the condition that the observation error is Uniformly Ultimately Bounded(UUB) within an arbitrarily shrinkable region, the overall closed-loop system is shown to be Globally Uniformly Ultimately Bounded(GUUB). In addition, the Global Asymptotic Stability(GAS) of it is shown under the vanishing disturbance assumption. Finally, the effectiveness of the proposed scheme has been confirmed by numerical simulations.

Design of the Combined Direct and Indirect Adaptive Neural Controller Using Fuzzy Rule (퍼지규칙에 의한 직.간접 혼합 신경망 적응제어시스템의 설계)

  • 이순영;장순용
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.603-610
    • /
    • 2000
  • In this paper, the direct and indirect adaptive controller are combined based on the Lyapunov synthesis approach. The Proposed controller is constructed from RBF Neural Network and weighting parameters are adjusted on-line according to some adaptation law. In this scheme, fuzzy IF-THEN rules are used to decide the combined weighting factor. In the results, proposed controller has the main advantages of both the direct adaptive controller and the indirect adaptive controller. The effectiveness of the proposed control scheme is demonstrated through simulation results of control for one-link rigid robotics manipulator.

  • PDF

Sensorless Vector Control of IPMSM Drive with Adalptive Fuzzy Controller (적응 퍼지제어기에 의한 IPMSM 드라이브의 쎈서리스 벡터제어)

  • Kim Jong-Gwan;Park Byung-Sang;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.98-106
    • /
    • 2006
  • This paper proposes to position and speed control of interior Permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. Also, this paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of PMSM drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. A Gopinath observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of IPMSM, that employs a d-q rotating reference frame attached to the rotor. A Gopinath observer is implemented to compute the speed and position feedback signal. The validity of the proposed scheme is confirmed by various response characteristics.

Fuzzy Gain Scheduling Flux Observer for Direct Torque Controlled Induction Motor Drives (직접토크제어 유도전동기 구동장치를 위한 퍼지이득조정 자속관측기)

  • 금원일;류지수;박태건;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.234-234
    • /
    • 2000
  • A direct torque control(DTC) based sensorless speed control system which employs a new closed loop flux observer is proposed. The flux observer takes an adaptive scheduling gains where motet speed is used as the scheduling variable. Adaptive nature comes from the fact that the estimated values of stator resistance and speed are included as observer parameters. The parameters of the PI controllers adopted in the adaptive law for the estimation of stator resistance and motor speed are determined by simple genetic algorithm. Simulation results in low speed region are given for comparison between proposed and conventional flux estimate scheme.

  • PDF

Direct Adaptive Fuzzy Sliding Mode Control for Under-actuated Uncertain Systems

  • Su, Shun-Feng;Hsueh, Yao-Chu;Tseng, Cio-Ping;Chen, Song-Shyong;Lin, Yu-San
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.240-250
    • /
    • 2015
  • The development of the control algorithms for under-actuated systems is important. Decoupled sliding mode control has been successfully employed to control under-actuated systems in a decoupling manner with the use of sliding mode control. However, in such a control scheme, the system functions must be known. If there are uncertainties in those functions, the control performance may not be satisfactory.In this paper, the direct adaptive fuzzy sliding mode control is employed to control a class of under-actuated uncertain systems which can be regarded as a combination of several subsystems with one same control input. By using the hierarchical sliding control approach, a sliding control law is derived so as to make every subsystem stabilized at the same time. But, since the system considered is assumed to be uncertain, the sliding control law cannot be readily facilitated. Therefore, in the study, based on Lyapunov stable theory a fuzzy compensator is proposed to approximate the uncertain part of the sliding control law. From those simulations, it can be concluded that the proposed compensator can indeed cope with system uncertainties. Besides, it can be found that the proposed compensator also provide good robustness properties.

Adaptive Learning Control of an Uncertain Robot Manipulator Using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 불확실한 로보트 매니퓰레이터의 적응 학습 제어)

  • 김성현;최영길;김용호;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.25-32
    • /
    • 1996
  • This paper will propose the direct adaptive learning control scheme based on adaptive control technique and intelligent control theory for a nonlinear system. Using the proposed learning control scheme, we will apply to on-line control an uncertain but for model perfect matching, it's structure condition is known. The effectiveness of the proposed control schem will be illustrated by simulations of a robot manipulator.

  • PDF

Hybrid Fuzzy Controller for DTC of Induction Motor Drive (유도전동기 드라이브의 DTC를 위한 하이브리드 퍼지제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.22-33
    • /
    • 2011
  • An induction motor operated with a conventional direct self controller(DSC) shows a sluggish response during startup and under changes of torque command. Fuzzy logic controller(FLC) is used in conjection with DSC to minimize these problems. A FLC chooses the switching states based on a set of fuzzy variables. Flux position, error in flux magnitude and error in torque are used as fuzzy state variables. Fuzzy rules are determinated by observing the vector diagram of flux and currents. This paper proposes hybrid fuzzy controller for direct torque control(DTC) of induction motor drives. The speed controller is based on adaptive fuzzy learning controller(AFLC), which provide high dynamics performances both in transient and steady state response. Flux position, error in flux magnitude and error in torque are used as FLC state variables. The speed is estimated with model reference adaptive system(MRAS) based on artificial neural network(ANN) trained on-line by a back-propagation algorithm. This paper is controlled speed using hybrid fuzzy controller(HFC) and estimation of speed using ANN. The performance of the proposed induction motor drive with HFC controller and ANN is verified by analysis results at various operation conditions.

An Adaptive Fuzzy Current Controller with Neural Network For Field-Oriented Controller Induction Machine

  • Lee, Kyu-Chan;Lee, Hahk-Sung;Cho, Kyu-Bock;Kim, Sung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.227-230
    • /
    • 1993
  • Recently, the development of novel control methodology enables us to improve the performance of AC-machine drives by using pulse width modulation (PWM) technique. Usually, the dynamic characteristic of induction motor (IM) has been represented by the 5-th order nonlinear differential equation. This dynamics, however, can be reduced to 3-rd order dynamics by applying direct control of IM input current. This methodology concludes that it is much easier to control IM by means of the field-oriented methods employing the current controller. Therefore a precise current control is crucial to achieve a high control performance both in dynamic and steady state operations. This paper presents an adaptive fuzzy current controller with artificial neural network (ANN) for field-oriented controlled IM. This new control structure is able to adaptively minimize a current ripple while maintaining constant switching frequency. Especially the proposed controller employs neuro-computing philosophy as well as adaptive learning pattern recognizing principles with respect to variations of the system parameters. The proposed approach is applied to the IM drive system, and its performance is tested through various simulations. Simulation results show that the proposed system, compared among several known classical methods, has a superb performance.

  • PDF