• Title/Summary/Keyword: dioxane

Search Result 212, Processing Time 0.026 seconds

Effect of Various Additives and Solvents on Thermostability of Cyclodextrin Glucanotransferase from Bacillus stearothermophilus (여러 첨가물의 용매가 Bacillus stearothermophilus가 생산하는 Cyclodextrin Glucanotransferase의 열안정성에 미치는 영향)

  • 안중훈;황진봉;김승호
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.368-371
    • /
    • 1991
  • The influence of ethylene glycol, glycerol, sorbitol and sucrose on the thermostability of Bacilus stearothermophzlus cyclodextrin glucanotransferase (CGTase) was investigated. Glycerol, sorbitol and sucrose had effect on thermostability of the CGTase. The effects appeared to be strongly dependent on concentration of additives. The thermostability of CGTase also was assayed in organic solvents such as n-butanol, l, &dioxane, n-octane. The therrnostability of CGTase increased in l, 4-dioxane and n-octane. Particularly, in n-octane, the CGTase retained the 81% of the initial activity after incubation at $75^{\circ}C$ for 90 min.

  • PDF

Removal Characteristics of Cyclic Ethers in Biological Wastewater Treatment System (고리형 에테르의 생물학적 처리 특성)

  • Lee, Sung-Ryul;Jeong, Yeon-Koo
    • Journal of Environmental Science International
    • /
    • v.17 no.3
    • /
    • pp.343-350
    • /
    • 2008
  • The fate of two cyclic ethers, THF(Tetrahydrofuran) and 1,4-Dioxane, in conventional biological wastewater treatment plants was investigated using sequential activated sludge process. Removal efficiency of THF were about 86% in average, which was greater than that of 1,4-Dioxane, 30%. However, it was not clear whether the removal of cyclic ethers in biological system was caused by microbial activity or not. Thus treatability tests were conducted by batch experiments. The effects of mixing, aeration and the addition of activated sludge on the removal of cyclic ethers were investigated in batch experiments. THF was totally removed by mixing and aeration in 24 hours while removal ratio of 1,4-Dioxane was at most 30% for the same period. This results could be ascribed to the differences in Henry's law constants between the two chemicals. In addition, biological degradation including biosorption was not obviously observed in these batch tests.

Density Functional Theory Demonstration of Anomeric Effect and Structure: Conformational and Configurational Analysis of N-2-(1,4-Dioxane)-N'-(4-methylbenzenesulfonyl)-O-(4-methylphenoxy) Isourea

  • Dabbagh, Hossein A.;Najafi Chermahini, Ali Reza;Modarresi-Alam, Ali Reza
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1229-1234
    • /
    • 2005
  • The conformational, configurtational behavior and the structure of N-2-(1,4-Dioxane)-N'-(4-methylbenzenesulfonyl)-O-(4-methylphenoxy) isourea 1 has been studied using DFT method. Calculations predict the imidoyl amino group of the dioxane ring prefers axial conformation and that the tosyl and tolyl groups about the C=N bond retain E configuration. The anomeric effect controls the population of dioxane ring conformers, and anomers. Intramolecular hydrogen bonds contribute to the stability of E isomers. The computational analysis of 1 complements the X-ray findings.

Calculation of the Dipole Moments for Square Pyramidal Complexes

  • Ahn, Sang-Woon;Yuk, Geun-Yong;Park, Eui-Suh
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 1986
  • Modified technique in calculating the dipole moments for square pyramidal complexes has been developed and then the dipole moments for bisacetylacetonato(oxo)vanadium(Ⅳ) complexes are calculated, adopting this approach. The calculated dipole moments for bisacetylacetonato(oxo)vanadium(Ⅳ) in benzene and bisacetylacetonato(oxo)vanadium in dioxane solutions are in agreement with the observed values. The calculated dipole moments of bisacetylacetonato(oxo)vanadium(Ⅳ) in dioxane solution is slightly higher than that of bisacetylacetonato(oxo)vanadium(Ⅳ) in benzene. Such a result may suggest that bisacetylacetonato(oxo)vanadium(Ⅳ) interact with dioxane molecule to form bisacetylacetonato(oxo)vanadium(Ⅳ)-dioxane adduct. This calculated dipole moments are also in agreement with the experimental results.

Removal Characteristics of 1,4-dioxane with O3/H2O2 and O3/Catalyst Advanced Oxidation Process (O3/H2O2와 O3/Catalyst 고급산화공정에서 1,4-dioxane의 제거 특성)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • Advanced oxidation processes involving $O_3/H_2O_2$ and $O_3/catalyst$ were used to compare the degradability and the effect of pH on the oxidation of 1,4-dioxane, Oxidation processes were carried out in a bubble column reactor under different pH. Initial hydrogen peroxide concentration was 3.52 mM in $O_3/H_2O_2$ process and 115 g/L (0.65 wt.%) of activated carbon impregnated with palladium was packed in $O_3/catalyst$ column. 1,4-dioxane concentration was reduced steadily with reaction time in $O_3/H_2O_2$ oxidation process, however, in case of $O_3/catalyst$ process, about $50{\sim}75%$ of 1,4-dioxane was degraded only in 5 minutes after reaction. Overall reaction efficiency of $O_3/catalyst$ was also higher than that of $O_3/H_2O_2$ process. TOC and $COD_{cr}$ were analyzed in order to examine the oxidation characteristics with $O_3/H_2O_2\;and\;O_3/catalyst$ process. The results of $COD_{cr}$ removal efficiency and ${\Delta}TOC/{\Delta}ThOC$ ratio in $O_3/catalyst$ process gave that this process could more proceed the oxidation reaction than $O_3/H_2O_2$ oxidation process. Therefore, it was considered that $O_3/catalyst$ advanced oxidation process could be used as a effective oxidation process for removing non-degradable toxic organic materials.

1,4-Dioxane Decomposition by Catalytic Wet Peroxide Oxidation using Cu Wire Catalysts (Cu wire 촉매를 이용한 촉매습식과산화공정에 의한 1,4-다이옥산의 분해)

  • Lee, Dong-Keun;Kim, Dul Sun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.281-285
    • /
    • 2016
  • Cu wire catalyst was highly reactive toward catalytic wet peroxide oxidation of the highly refractory 1,4-dioxane. While complete removal of 1,4-dioxane could be achieved with the catalyst, the removed 1,4-dioxane could not totally mineralized into $CO_2$ and $H_2O$. In accordance with the disappearance of 1,4-dioxane, formaldehyde and oxalic acid were formed gradually with reaction time and they went through maxima. At around the time of maximum concentrations of these two intermediates acetaldehyde concentration was increased drastically and showed maximum value. With the disappearance of these three intermediates, formic acid together with ethylene glycol diformate began to increase gradually. The Cu wire catalyst was proved also to be highly stable against deactivation during the reaction.

Ecotoxicity Assessment of 1,4-Dioxane and Dichloromethane in Industrial Effluent Using Daphnia magna (물벼룩을 이용한 산업방류수 중 1,4-다이옥산 및 디클로로메탄의 생태독성평가)

  • Choi, Jae Won;Lee, Sun Hee;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.466-471
    • /
    • 2019
  • 1,4-dioxane and dichloromethane are classified as carcinogenic groups in the International Agency for Research on Cancer (IARC). They are frequently released at high concentrations in an industrial wastewater effluent. The acute toxicity (24 h) of Daphnia magna for 7.53 mg/L of 1,4-dioxane in the industrial effluent was evaluated as 1.1 TU (toxic unit) and showed TU close to the effluent quality standard. Mixed substances of 1,4-dioxane and dichloromethane in the industrial effluent showed relatively high TU as compared to that of a single substance. Half maximal effective concentration (24 h $EC_{50}$) values of 1,4-dioxane and dichloromethane for the synthetic wastewater prepared in laboratory were 1,744 (0.06 TU) and 170 mg/L (0.6 TU), respectively and the toxicity was low. Nevertheless the toxicological evaluation of the mixture showed that TU values increased to 0.02, 0.04 and 0.10, respectively as 1, 5 and 10 ppm of dichloromethane was added to 100 ppm of 1,4-dioxane. And the synergistic effect was observed between two substances. But the TU value of synthetic wastewater was below 5%, lower than that of industrial effluent at the similar concentration.

The Effects for insecticide and synthesis of 5,6,8-trichloro-2,4-di-trichloro methyl benzo-1,3-dioxane (5,6,8-Trichloro-2,4-di-trichloromethyl-benzo-1,3-dioxane의 合成과 殺충能에 관하여)

  • Lee, Dae-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.62-66
    • /
    • 1966
  • An insecticide was obtained from condensation of chloral hydrate with 2,4,5-trichloro phenol. The structure of the insecticide was found to be 5,6,8-trichloro 2,4-di-trichloro methyl benzo 1,3-dioxane. The best conditions of the condensation were as follows: 1) The sulfuric acid concentration; $97{\%}$. 2) The mole ratio of sulfuric acid to 2,4,5-trichloro phenol; 14.2. 3)The mole ratio of chloral hydrate to 2,4,5-trichloro phenol; 2.4. 4) The reaction time & reaction temperature;15hrs & $50-55^{\circ}C$.The insecticidal effects of T. D. B against the Citrus Red Mite and Green Peach Aphid were the same of Mydran.

  • PDF

Theoretical Studies of Hydrogen Bonded Dimers AM1 Study of Hydrogen-Bonding Energies of MeOH-solvent Binary Systems (水素結合 이합체에 關한 理論的인 硏究, 메탄올-溶妹 이성분계에 대한 水素結合 에너지의 AM1 的 硏究)

  • Shi Choon Kim;Myoung Ok Park
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.249-259
    • /
    • 1988
  • The solvent effects of MeOH-solvent dimers were studied via AM1 Hamiltonian and supermolecule methods. Methanol, ethanol, acetone, dimethylsulfoxide, N,N-dimethylformamide, tetrahydrofuran, dioxane, and acetonitrile were considered as solvent molecules. Optimized geometries, electron densities, molecular energies, and hydrogen-bonding energies of monomers and dimers were calculated. We found that the stabilization energies contributed to the hydrogen-bonding were decreased in the order of dimethylsulfoxide > ethanol > N,N-dimethylformamide > acetone > methanol > tatrahydrofuran > dioxane > acetonitrile, and this order was explained by using the change of electron density and energy partition functions.

  • PDF