Browse > Article
http://dx.doi.org/10.5322/JES.2008.17.3.343

Removal Characteristics of Cyclic Ethers in Biological Wastewater Treatment System  

Lee, Sung-Ryul (Korea National Housing Corporation, Division of Facility Management)
Jeong, Yeon-Koo (Department of Civil and Environmental Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of Environmental Science International / v.17, no.3, 2008 , pp. 343-350 More about this Journal
Abstract
The fate of two cyclic ethers, THF(Tetrahydrofuran) and 1,4-Dioxane, in conventional biological wastewater treatment plants was investigated using sequential activated sludge process. Removal efficiency of THF were about 86% in average, which was greater than that of 1,4-Dioxane, 30%. However, it was not clear whether the removal of cyclic ethers in biological system was caused by microbial activity or not. Thus treatability tests were conducted by batch experiments. The effects of mixing, aeration and the addition of activated sludge on the removal of cyclic ethers were investigated in batch experiments. THF was totally removed by mixing and aeration in 24 hours while removal ratio of 1,4-Dioxane was at most 30% for the same period. This results could be ascribed to the differences in Henry's law constants between the two chemicals. In addition, biological degradation including biosorption was not obviously observed in these batch tests.
Keywords
THF; 1,4-Dioxane; Sequencing activated sludge; Mixing; Aeration;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Limbeck U., 2001, Rate expression for THF synthesis on acidic ion exchange resin, Chem. Eng. Sci., 56, 2171-2178   DOI   ScienceOn
2 경상남도 보건환경연구원, 2005, 폐수중의 1,4-다이옥산 처리기술 개발, CWPO(Catalytic Wet Peroxide Oxidation) 공법을 이용한 1,4-다이옥산 폐수처리 요약보고서, 1pp
3 Kohlweyer U., Thiemer B., Schrader T., Andreesen J. R., 2000, Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1, FEMS Microbiol. Lett., 186, 301-306   DOI
4 Kelley S. L., Aitchison E. W., Deshpande M., Schnoor J. L., Alvarez, P. J. J., 2001, Biodegradation of 1,4-Dioxane in planted and unplanted soil: effect of bioaugmentation with Amycolata sp. CB1190, Wat. Res., 35(16), 3791-3800   DOI   ScienceOn
5 Banach T. E., Berti C., Colonna M., Fiorini M., Marianucci E., Messori M., Pilati F., Tosellli M., 2001, New catalysts for poly(butylene terephthalate) synthesis 1. Titanium- lanthanides and Titanium-hafnium systems, Polymer, 42, 7511-7516   DOI   ScienceOn
6 Bernhardt D., Diekmann, H., 1991, Degradation of dioxane, tetrahydrofuran and other cyclic ethers by an environmental Rhodococcus strain, Appl. Microbiol. Biotechnol., 36(1), 120-123   DOI
7 US EPA, 2000, Henrywin, Version 3
8 Watts R. J., 1997, Hazardous wastes: sources, pathways, receptors, John Wiley & Sons, Inc., 306pp
9 Stefan M. I., Bolton J. R., 1998, Mechanism of the degradation of 1,4-Dioxane in dilute aqueous solution using the UV/hydrogen peroxide process, Environ. Sci. Technol., 32, 1588-1595   DOI   ScienceOn
10 Maurino V., Calza P., Minero C., Pelizzetti E., Vincenti M., 1997, Light-assisted 1,4-Dioxane degradation, Chemosphere, 35(11), 2675-2688   DOI   ScienceOn
11 임재림, 이경혁, 채선하, 김순홍, 안효원, 2004, 정수처리시스템에서 1,4-Dioxane의 제거 방안, 대한환경공학회지, 26(11), 1238-1243
12 이병렬, 김창균, 서형준, 2003, 1,4-Dioxane의 고도산화 및 생화학적 분해 특성 연구', 대한환경공학회지, 25(2), 240-247
13 김현승, 조성혜, 윤기용, 김일규, 2005, 고급산화법을 이용한 다이옥산 처리 연구, 대한토목학회논문집, 25(5B), 413-417
14 Popoola A. V., 1991, 'Mechanism of reaction involving the formation of dioxane by-product during the production of poly(ethylene terephthalate), J. Appl. Polym. Sci. 43, 1875-1877   DOI
15 http://www.imnews.com
16 Abe A., 1999, Distribution of 1,4-Dioxane in relation to possible sources in the water environment, Sci. Total Environ., 227, 41-47   DOI   ScienceOn
17 Klecka G. M., Gonsior S. J., 1986, Removal of 1,4-Dioxane from wastewater, J. Hazard. Mater., 13, 161-168   DOI   ScienceOn
18 Zenker M. J., Borden R. C., Barlaz M. A., 2000, Mineralization of 1,4-Dioxane in the presence of a structural analog, Biodegradation, 11, 239-246   DOI   ScienceOn
19 Zenker M. J., 2000, Biodegradation of Cyclic and Alkyl Ethers in Subsurface and Engineered Environments, Ph. D. Dissertation, Dept. of Civil Engineering, North Carolina State University, Raleigh
20 APHA, AWWA, WEF, 1995, Standard methods for the examination of water and wastewater, 19th ed., American Public Health Association 5-12pp
21 Roy D., Anagnostu G., Chaphalkar P., 1994, Biodegradation of dioxane and diglyme in industrial waste, J. Environ. Sci. Health part A, 29(1), 129-147   DOI
22 Parales R. E., Adamus J. E., White N., May H. D., 1994, Degradation of 1,4-Dioxane by an actinomycete in pure culture, Appl. Environ. Microbiol., 60, 4527-4530
23 Adams C. D., Scanlan P. A., Secrist N. D., 1994, Oxidation and biodegradability enhancement of 1,4-Dioxane using hydrogen peroxide and ozone, Environ. Sci. Technol., 28, 1812-1818   DOI   ScienceOn