• Title/Summary/Keyword: dimer formation

Search Result 92, Processing Time 0.022 seconds

Stereoselective Reduction of Methyl Vinyl Ketone Dimer

  • Jun, Jong-Gab;Shin, Dong-Gyun;Lee, Chang-Kiu;Sin, Kwan-Seog
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.307-309
    • /
    • 1990
  • The stereoselectivity of the reaction between methyl vinyl ketone dimer, which contains two possible sites of chelation, and zinc borohydride or diisobutylaluminum hydride has been studied in order to illuminate the factors involved in the high levels of asymmetric induction obtained in the bicyclic system. The conditions for the formation of the exo-5,7-dimethyl-6,8-dioxabicyclo[3.2.1]octane are DIBAH reduction of MVK dimer in ether at reflux followed by acidic cyclizatioan, and for the endo isomer are $Zn(BH_4)_2$ reduction with $ZnCl_2$ at $0^{\circ}C.$.

A Theoretical Study of the Formation of Benzene Excimer: Effects of Geometry Relaxation and Spin-state Dependence

  • Kim, Dongwook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2738-2742
    • /
    • 2014
  • Geometry relaxation effects on the formation of benzene excimer were investigated by means of ab initio calculation at SOS-CIS($D_0$)/aug-cc-pVDZ level. In the case of T-shaped dimer configuration, intermolecular interactions in the excited states are found to be nearly the same as those in the ground state and structural deformations are limited within a single molecule; the geometry relaxation effects are then negligible and singlet-triplet energy gap remains constant. As for face-to-face eclipsed dimer, on the other hand, both molecules undergo structural change. As a result, intermolecular interactions in the excited states are significantly different than those in the ground state. Although the intermolecular distances obtained from potential energy curve calculation with frozen molecular structures are in qualitative agreement, the excited-state binding energies are notably overestimated with respect to those at optimized structures. In particular, the effects are calculated to be larger in $T_1$ state and hence singlet-triplet energy gap, which reduces markedly in this configuration, is underestimated without relaxation.

An Eurpium(III) Hydrolytic Catalyst Favoring Anionic Phosphate Esters over Phosphate Triester'

  • Yun, Chang Won;O, Sun Jin;Jeon, Yeong Jin;Choe, Yeong Seo;Son, Yun Gyeong;HwangBo, Seok;Gu, Ja Gang;Park, Jun Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.199-204
    • /
    • 2001
  • A Cryptate (221) having a short alcohol pendant (2) was metallated with europium(Ⅲ) in anhydrous condition, and its hydrolytic activity for phosphate esters at neutral pH was examined. While the activity for the phosphate diester and monoester is comparable to that of the parent metal complex [1Eu]3+, its hydrolytic activity towards a phosphate triester is significantly suppressed. Potentiometric titration and luminescence spectroscopic studies for the equilibrium behavior of the complex in solution suggest that a dimer formation through the metal hydroxides as well as the pendant alcohol is likely to happen. The low hydrolytic activity for the triester seems to be associated with the dimer formation.

Regular Distribution of -OH Fragments on a Si (001)-c(4×2) Surface by Dissociation of Water Molecules (물 분자의 해리에 의한 Si (001)-c(4×2) 표면에서의 수산화기의 균일한 분포)

  • Lee, Soo-Kyung;Oh, Hyun-Chul;Kim, Dae-Hee;Jeong, Yong-Chan;Baek, Seung-Bin;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.457-462
    • /
    • 2010
  • Adsorption of a water molecule on a Si (001) surface and its dissociation were studied using density functional theory to study the distribution of -OH fragments on the Si surface. The Si (001) surface was composed of Si dimers, which buckle in a zigzag pattern below the order-disorder transition temperature to reduce the surface energy. When a water molecule approached the Si surface, the O atom of the water molecule favored the down-buckled Si atom, and the H atom of the water molecule favored the up-buckled Si atom. This is explained by the attractions between the negatively charged O of the water and the positively charged down-buckled Si atom and between the positively charged H of the water and the negatively charged up-buckled Si atom. Following the adsorption of the first water molecule on the surface, a second water molecule adsorbed on either the inter-dimer or intra-dimer site of the Si dimer. The dipole-dipole interaction of the two adsorbed water molecules led to the formation of the water dimer, and the dissociation of the water molecules occurred easily below the order-disorder transition temperature. Therefore, the 1/2 monolayer of -OH on the water-terminated Si (001) surface shows a regular distribution. The results shed light on the atomic layer deposition process of alternate gate dielectric materials, such as $HfO_2$.

Effects of Hin Recombinase Dimer Interface Mutants on DNA Binding and Recombination

  • Lee, Hee-Jung;Lee, Sun-Young;Lee, Hee-Jin;Lim, Heon-Man
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.27-31
    • /
    • 2001
  • Previous biochemical assays and a structural model indicated that the dimer interface of the Hin recombinase is composed of the two a-helices. To elucidate the structure and function of the helix, amino acids in the N-terminal end of the helix, where the two helices contact most, were randomized, and inversion-incompetent mutants were selected. To investigate why the mutants lost their inversion activities, the DNA binding, hix-pairing, invertasome formation, and DNA cleavage activities were assayed using in vivo and in vitro methodologies. Results indicated that the mutants could be divided into 4 classes based on their DNA binding activity. We proposed that the a-helices might place a DNA binding motif of Hin properly to the minor DNA groove of the recombination site. All the mutants except the non-binders were able to perform hix-pairing and invertasome formation, suggesting that the dimer interface is not involved in the process of hix-pairing or invertasome formation. The inversion-incompetent phenotype of the binders was caused by the inability of mutants to perform the DNA cleavage activity. The less binders exhibited wild-type level of hix-pairing activity because the hix-pairing activity overcomes the DNA binding defect of the less binders. This phenotype of the less binders suggests that the binding domains of Hin could mediate Hin-Hin interaction during hix-pairing..

  • PDF

Reactions of Triethylgermyldiphenylphosphine with Phenylisocyanate (Triethylgermyldiphenylphosphine과 Phenylisocyanate의 반응)

  • Sung Woo Park;Il Kyu Lee
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.53-57
    • /
    • 1983
  • Triethylgermyldiphenylphosphine was reacted with phenylisocyanate at various temperatures for three days in sealed ampoules. At $0^{\circ}C$, only N, N-diphenyluretidine-2,4-dione, a cyclic dimer of phenylisocyanate (35%), was formed. But at $20^{\circ}C$, phenylisocyanutrate, a cyclic trimer of phenylisocyanate (30%), was formed along with the dimer. At $50^{\circ}C$, diphenylcarbodiimide (55%) was given together with the compounds described above. At the higher reaction temperatures than $100^{\circ}C$, instead of the dimer and trimer of phenylisocyanate, 1,3,5-triphenyl-2,4,6-tris(phenylimino) hexahydro-1,3,5-triazine, a cyclic trimer of diphenylcarbodiimide (30%) and diphenylcarbodiimide (70%) were mainly produced. Triethylgermyldiphenylphosphine appears to act as a catalyst for the formation of the above cyclic compounds.

  • PDF

Reaction of Tri-methylaluminum on Si (001) Surface for Initial Aluminum Oxide Thin-Film Growth

  • Kim, Dae-Hee;Kim, Dae-Hyun;Jeong, Yong-Chan;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3579-3582
    • /
    • 2010
  • We studied the reaction of tri-methylaluminum (TMA) on hydroxyl (OH)-terminated Si (001) surfaces for the initial growth of aluminum oxide thin-films using density functional theory. TMA was adsorbed on the oxygen atom of OH due to the oxygen atom’s lone pair electrons. The adsorbed TMA reacted with the hydrogen atom of OH to produce a di-methylaluminum group (DMA) and methane with an energy barrier of 0.50 eV. Low energy barriers in the range of 0 - 0.11 eV were required for DMA migration to the inter-dimer, intra-dimer, and inter-row sites on the surface. A unimethylaluminum group (UMA) was generated at each site with low energy barriers in the range of 0.21 - 0.25 eV. Among the three sites, the inter-dimer site was the most probable for UMA formation.

Peroxidase-mediated Formation of the Fungal Polyphenol 3,14'-Bihispidinyl

  • Lee, In-Kyoung;Yun, Bong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.107-109
    • /
    • 2008
  • Medicinal fungi, Phellinus linteus and Inonotus xeranticus, produce a cluster of yellow pigment in their fermentation broth that acts as an important element of biological activity. The pigment is composed of diverse polyphenols with a styrylpyrone moiety, mainly hispidin and its dimers, 3,14'-bihispidinyl, hypholomine B, and 1,1-distyrylpyrylethan. Although dimeric hispidins were proposed to be biosynthesized from two molecules of monomer via oxidative coupling by ligninolytic enzymes, laccase and peroxidase, the details of this process remain unknown. In this preliminary study, we attempted to achieve enzymatic synthesis of the hispidin dimer from hispidin by using commercially available horseradish peroxidase (HRP). Consequently, a hispidin dimer, 3,14'-bihispidinyl, was synthesized, whereas the other dimers, hypholomine B and 1,1-distyrylpyrylethan, were not produced. This result suggested that the oxidative coupling at the C-3 and C-14' positions of hispidins was dominant in the process of dimerization by HRP, and indicated that additional catalysts or substrates would be needed to synthesize other hispidin dimers present in the fungal metabolite.

PM3 Studies on the Acid-Catalyzed Hydrolysis of 1-Phenoxyethyl Propionate

  • 김찬경;이인영;정동수;이본수;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.993-999
    • /
    • 1998
  • Acid catalyzed hydrolysis of 1-phenoxyethyl propionate, Ⅰ, has been studied using the PM3 method in the gas phase. The first step of the reaction is the protonation of basic sites, three different oxygens in Ⅰ, producing three protonated species Ⅱ, Ⅲ and Ⅳ. All possible reaction pathways have been studied from each protonated structure. Changes in the reaction mechanisms have also been discussed from the results obtained by varying a nucleophile from a water monomer to a water dimer to a complex between one water molecule and an intermediate product (propionic acid or phenol) produced in the preceding unimolecular dissociation processes. Minimum energy reaction pathway is 2-W among the possible pathways, in which water dimer acts as an active catalyst and therefore facilitates the formation of a six-membered cyclic transition state. Lower barrier of 2-W is ascribed to an efficient bifunctional catalytic effect of water molecules. PM3-SM3.1 single point calculations have been done at the gas-phase optimized structure (SM3.1/PM3//PM3) to compare theoretical results to those of experimental work.