• Title/Summary/Keyword: dimensionless

Search Result 1,064, Processing Time 0.03 seconds

Numerical Analysis for Unsteady Thermal Stratified Turbulent Flow in a Horizontal Circular Cylinder

  • Ahn, Jang-Sun;Ko, Yong-Sang;Park, Byeong-Ho;Youm, Hag-Ki;Park, Man-Heung
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.405-414
    • /
    • 1996
  • In this paper, the unsteady 2-dimensional turbulent flow model for thermal stratification in a pressurizer surge line of PWR plant is proposed to numerically investigate the heat transfer and flow characteristics. The turbulence model is adapted to the low Reynolds number K-$\varepsilon$ model (Davidson model). The dimensionless governing equations are solved by using the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The results are compared with simulated experimental results of TEMR Test. The time-dependent temperature profiles in the fluid and pipe nil are shown with the thermal stratification occurring in the horizontal section of the pipe. The corresponding thermal stresses are also presented. The numerical result for thermal stratification by the outsurge during heatup operation of PWR shows that the maximum dimensionless temperature difference is about 0.83 between hot and cold sections of pipe well and the maximum thermal stress is calculated about 322MPa at the dimensionless time 28.5 under given conditions.

  • PDF

RADIATION EFFECTS ON MHD BOUNDARY LAYER FLOW OF LIQUID METAL OVER A POROUS STRETCHING SURFACE IN POROUS MEDIUM WITH HEAT GENERATION

  • Venkateswarlu, M.;Reddy, G. Venkata Ramana;Lakshmi, D. Venkata
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.83-102
    • /
    • 2015
  • The present paper analyses the radiation effects of mass transfer on steady nonlinear MHD boundary layer flow of a viscous incompressible fluid over a nonlinear porous stretching surface in a porous medium in presence of heat generation. The liquid metal is assumed to be gray, emitting, and absorbing but non-scattering medium. Governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations by utilizing suitable similarity transformation. The resulting nonlinear ordinary differential equations are solved numerically using Runge-Kutta fourth order method along with shooting technique. Comparison with previously published work is obtained and good agreement is found. The effects of various governing parameters on the liquid metal fluid dimensionless velocity, dimensionless temperature, dimensionless concentration, skin-friction coefficient, Nusselt number and Sherwood number are discussed with the aid of graphs.

Vibration Analysis of a Moving Mass Travelling on the Timoshenko Rotating Shaft (티모센코 회전축을 따라 움직이는 질량의 진동해석)

  • Park, Yong-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.859-864
    • /
    • 2008
  • The dynamic interaction between the moving mass and the rotating Timoshenko shaft is investigated. The moving speed of the mass is presented by a constraint equation related to the rotating speed of the shaft. The dimensionless equations of motion for the rotating shaft with a moving mass by using the Timoshenko's beam theory. The dynamic responses of this system are studied. influences of dimensionless parameters such as the rotating speed ratio. the Rayleigh coefficient and the dimensionless axial force are discussed on the transient response and the maximum deflection of the moving system.

The Effect of Film Thicknesses on Heat Transfer in a Rotating Heat Pipe with the Disc Evaporator (원판증발기를 가진 회전형 히트파이프에서 액막두께가 전열에 미치는 영향)

  • 권순석;장영석;유병욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1572-1581
    • /
    • 1994
  • Heat transfer characteristics in a rotating heat pipe with evaporator of the rotating disc and the condenser of the screwed groove is investigated by numerical method for various dimensionless film thicknesses, Re, C_{p}{\Delta}T/h_{fg}$, rotational speed and working fluids. The temperature difference between evaporator wall and vapor increases a little, but the temperature difference between condenser wall and vapor decreases rapidly as Re increases. As the dimensionless film thickness decreases, the temperature difference of evaporator and condenser decreases. As the rotational speed increases, the temperature difference between evaporator wall and vapor increases but the temperature difference between condenser wall and vapor decreases. The Nusselt number can be shown as a function of dimensionless film thickness and Re, that is $Nu=0.963\cdot(\delta^{-1}(\omega/\vpsilon)^{-1/2}{\cdot}Re^{0.5025})$.

Effect of Fluid Viscosity on the Suspension of a Single Particle in Channel Flow (채널 유동에서 점성이 단일 입자 혼합 유동의 suspension에 미치는 영향)

  • Choi, Hyoung-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.194-200
    • /
    • 2009
  • Suspension of a single solid particle in a channel flow with a constant pressure gradient is studied numerically. The interaction of a circular particle with a surrounding Newtonian fluid is formulated using a combined formulation. Numerical results are presented using two dimensionless variables: the sedimentation Reynolds number and the generalized Froude number. From the present results, it has been shown that a solid particle is suspended at a smaller generalized Froude number as the viscosity of the surrounding fluid increases. The time taken for equilibrium position is found to be smaller as fluid viscosity increases when both : the sedimentation Reynolds number and the generalized Froude number are the same while, at the same situation, the dimensionless time taken for equilibrium position is to be nearly the same regardless of fluid viscosity when a dimensionless time variable is introduced

Vibration analysis of rotating blades considering the cross section taper, the pre-twist angle, and the setting angle (단면 테이퍼, 초기 비틀림각, 그리고 장착 각의 영향을 고려한 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.288-295
    • /
    • 2009
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and orientation angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena is also investigated and discussed in this work.

  • PDF

Modal Analysis of a Rotating Multi-Packet Pre-twisted Blade System (초기 비틀림각을 갖는 회전하는 다중 패킷 블레이드 시스템의 고유 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.393-399
    • /
    • 2008
  • A modeling method for the modal analysis of a pre-twisted multi-packet blade system undergoing rotational motion is presented in this paper. Blades are idealized as pre-twisted cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. The coupling effect between chordwise and flapwise bending deflection is also considered. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters and the number of packets as well as blades on the modal characteristics of the rotating multi-packet pre-twisted blade system are investigated with some numerical examples.

  • PDF

Vibration Analysis of Cantilever Plates Undergoing Translationally Accelerated Motion

  • Yoo, Hong-Hee;Kim, Sung-Kyun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.448-453
    • /
    • 2002
  • This paper presents a modeling method for the vibration analysis of translationally accelerated cantilever plates. An accurate dynamic modeling method, which was introduced in the previous study, is employed to obtain the equations of motion for the vibration analysis. Dimensionless parameters are identified to generalize the conclusions from numerical results. The effects of the dimensionless parameters on the natural frequencies and mode shapes are investigated. Particularly, the magnitude of critical acceleration which causes the dynamic buckling of the structure is calculated. Incidentally, the natural frequency loci veering phenomena are observed and discussed.

Vibration Analysis of a Rotating Multi-Packet Blade System Having Tapered Cross Section (회전하는 테이퍼 단면 다중 패킷 블레이드 시스템의 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.832-837
    • /
    • 2008
  • A modeling method for the modal analysis of a multi-packet blade system having tapered cross section undergoing rotational motion is presented in this paper. Blades are idealized as tapered cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters including tapered ratio and the number of packets as well as blades on the modal characteristics of the system are investigated with some numerical examples.

  • PDF

Thermal stratification in a horizontal pipe of pressurizer surge line (가압기밀림관의 수평배관내 열성층유동)

  • Jung, I,S,;Kim, Y.;Youm, H.K.;Park, M.H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1449-1457
    • /
    • 1996
  • In this paper, the unsteady two dimensional model for the thermal stratification in the pressurizer surge line of PWR plant has been proposed to numerically investigate the heat transfer and flow characteristics. The dimensionless governing equations are solved by using the Control Volume Formulation and SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The temperature profile of fluids and pipe wall with time are shown when the thermal stratification occurs in the horizontal pipe. The numerical result shows that the maximum dimensionless temperature difference is about O.514 between hot and cold section of pipe wall at dimensionless time 1,632.