• Title/Summary/Keyword: dimensionless

Search Result 1,064, Processing Time 0.032 seconds

Numerical Simulajtions of Non-ergodic Solute Transport in Strongly Heterogeneous Aquiferss (불균질도가 높은 대수층내에서의 비에르고딕 용질이동에 관한 수치 시뮬레이션)

  • Seo Byong-Min
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.245-255
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a non-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce the simulation uncertainties. Ensemble averages of the second spatial moments of the plume, $$lt;S_{ij}'(t',l')$gt;$ and plume centroid variances, $$lt;R_{ij}'(t',l')$gt;$ were simulated with 3200 Monte Carlo runs for three variances of log K, $\omega^2_y1.0,,2.5,$ and 5.0, and three dimensionless lengths of line plume sources ( l=,5 and 10) normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are not fit well with the first order results. The first order theoretical results definitely underestimated the simulated transverse second spatial moments for the aquifers of large u: and small initial plume sources. The ergodic condition for the second spatial moments is far from reaching, and the first order theoretical results of the transverse second spatial moment of the ergodic plume slightly underestimated the simulated moments.

A Methodology for the Estimation of Design Flood of a Small Watershed (소하천유역(小河川流域)의 계획홍수량(計劃洪水量) 산정방법(算定方法)의 개발(開發))

  • Yoon, Yong Nam;Ahn, Tae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.103-112
    • /
    • 1984
  • This study is an effort to develop a series of empirical procedure for the determination of design flood for a small watershed based on the unit hydrograph theory. It is shown that a flood discharge of a watershed with a specific return period can be expressed as a product of its watershed area, rainfall factor, runoff factor and flood peak reduction factor. Since the procedures for the determination of rainfall factor and runoff factor were already developed in the previous study (13) a series of step-by-step procedure is devised to empirically determine the flood peak reduction factor in the present study. Using the methodology developed herein the 50-year design flood, which is of concern in the drainage of agricultural lands, is estimated for a watershed on upper Kyungan River and compared with the design floods by the existing methods now in use. The flood peak reduction factor was correlated with the dimensionless parameter consisted of the rainfall duration divided by the basin lag time, which was computed from the derived unit hydrographs by the method of moment. The unit hydrographs of various durations were synthesized by the method of build up and S-curve. A multiple correlation was also made between the basin lag time and the physiographic parameters of the watershed, i.e., the stream length and the average stream slope.

  • PDF

Analysis of Stream Depletion due to Groundwater Pumping in Variable Stream Stages Using an Analytical Model (해석적 모형을 이용한 지하수 양수 및 하천수위 변화에 따른 하천수 감소 특성 분석)

  • Lee, Jeongwoo
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.439-449
    • /
    • 2019
  • To prevent the drying-out of streams and to make effective use of stream water and groundwater, it is necessary to evaluate the impact of groundwater pumping on nearby streams. To this end, stream depletion due to groundwater pumping should be investigated in terms of various hydraulic characteristics of the aquifer and stream. This study used the Baalousha analytical solution, which accounts for stream-stage variation over time, to analyze stream depletion due to groundwater pumping for cases where the stream level decreases exponentially and recovers after the decrease. For conditions such as an aquifer transmissivity of 10~100 ㎡ d-1, storage coefficient 0.05~0.3, streambed hydraulic conductance 0.1~1.0 m d-1, stream-well distance 100~500 m, and stage recession coefficient 0.1~1.0 d-1, the contribution of stream water (the dimensionless ratio of stream water reduction rate to groundwater pumping rate) was analyzed in cases where stream level change was considered. Considering the effect of stream-stage recession, the contribution of stream water is greatly reduced and is less affected by the stream-depletion factor, which is a function of the stream-to-well distance and hydraulic diffusivity. However, there is no significant difference in stream depletion under constant- and variable-stage recovery after recession. These results indicate that stream level control can distribute the relative impacts on stream water and aquifer storage during groundwater pumping

A Study on the Improvement of Huff's Method for Applying in Korea : II. Improvement of Huff's Method (Huff 강우시간분포방법의 개선방안 연구 : II. Huff 방법의 개선방안)

  • Jang Su-Hyung;Yoon Jae-Young;Yoon Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.779-786
    • /
    • 2006
  • In this study, we propose a new method that utilizes rainfall data in and out of a basin, which is greater than 25.4mm for point rainfall or 12.7mm for areal mean rainfall respectively. From our analysis, most frequent quartile for point and areal mean rainfall were found to be the same in general for various rainfall duration intervals. From an evaluation of design rainfall per each rainfall duration distributed in time by the MOCT(Ministry of Construction and Transportation) version of Huff's method and this study, peak rainfall intensity by this study was found to be greater than the one by MOCT, but there were no consistent increase or decrease of this difference with rainfall durations. Using the distributed design rainfall per each duration by MOCT and this study, corresponding flood inflow hydrographs were simulated and compared each other. Contrary to the case of peak rainfall intensity, difference in peak flow by both methods per each rainfall duration started to increase from about 12-hr duration. Especially, the difference in peak flow was significant when critical rainfall duration was considered, and this trend was similar for peak flows of other rainfall durations. Therefore, the method proposed in this study is thought to be the effective procedure for the construction of dimensionless cumulative rainfall curve that is representative of a basin while considering time distribution characteristics for different rainfall durations.

A Study on the Improvement of Huff's Method in Korea : I. Review of Applicability of Huff's method in Korea (Huff 강우시간분포방법의 개선방안 연구 : I. Huff방법의 국내유역 적용성 검토)

  • Jang Su-Hyung;Yoon Jae-Young;Yoon Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.767-777
    • /
    • 2006
  • The goal of this study is to improve Huff's method which is the most popular method for rainfall time distribution in Korea. As the first step, we reevaluated the context of Huff's original research motivations, geography and rainfall pattern of study area, and compared that to Korean situations. In original Huff's results, no change in temporal distribution characteristics were found for different rainfall durations. This was found to be different from Korean situations. Furthermore, results from the MOCT(Ministry of Construction and Transportation) version of Huff's method is on a gage basis not on a watershed basis, thus making it difficult to select cumulative rainfall curves representative of a watershed. In addition, all rainfall data regardless of their magnitude were used in the MOCT version of Huff' method which is different from original Huff's which screened out data by using a threshold value of 25.4mm. For both point and areal mean rainfall, time distribution characteristics of rainfall for various durations were found to be different. This was statistically proven by K-S test at 5% significance level as some cumulative rainfall curves developed from the rainfall data of certain durations were found to be not significant with cumulative rainfall curves developed from the rainfall data of all durations. Therefore, in order to apply Huff's method to Korean situations, it is recommended that dimensionless cumulative curve must be developed for various rainfall duration intervals using rainfall data greater than a certain threshold value.

Development of a Rainfall Time Distribution Model for Urban Watersheds (도시유역의 유출특성을 고려한 강우분포 모형의 개발)

  • Joo, Jin-Gul;Lee, Jung-Ho;Jo, Deok-Jun;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.655-663
    • /
    • 2007
  • This study suggests a new time distribution method of rainfall for small urban watersheds. IETD (Interevent Time definition) determination method considering basin characteristics and dimensionless accumulation rainfall curves involving rainfall events with shorter duration than 3-hours are suggested. A new definition of IETD is the time period from the end of a rainfall event to the end of a direct runoff. Using the method, we drive an area-IETD regression curve for the Joong-Rang basin. The rainfall event with 10 year-return periods, 2-hour duration is distributed and applied four urban watersheds. In the four watersheds, we calculate hydrographs for four watersheds using SWMM and compare them with ones of the Huff's distribution model. From the comparison, we find that peak flows resulted from the developed methodology are $11\sim15%$ larger than ones from the Huff's model. As conclusion, the Huff method should be adopted for the urban watersheds with careful verification.

Effect of $N_2$-back-flushing Time and TMP in Lake Water Treatment Using Multichannel Ceramic Microfiltration Membranes (다채널 세라믹 정밀여과막으로 호소수 처리시 질소 역세척 시간 및 막간 압력차의 영향)

  • Park, Jin-Yong;Park, Bo-Reum
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.124-133
    • /
    • 2007
  • In this study, we treated lake water by 2 kinds of multichannel ceramic micro filtration membranes. We could investigate effects of $N_2-back-flushing$ time (BT) and transmembrane pressure (TMP), and find optimal operating conditions. The BT were changed in $10{\sim}60$ sec, TMP in $0.6{\sim}2.0$ bar at fixed filtration time (FT) 8 min, flow rate 2.0 L/min and back-flushing pressure 2.0 bar. Also, the optimal conditions were discussed in the viewpoints of resistance of membrane fouling $(R_f)$, dimensionless permeate flux $(J/J_o)$, permeate flux (J) and total permeate volume $(V_T)$. As result, optimal back-flushing conditions for HC04 ($0.4{\mu}m$ pore size) and HC10 membrane $(1.0{\mu}m)$ were BT=10 sec and BT=20 sec, respectively. Then, higher TMP should increase the driving force, and could produce more VT. Average rejection rates of pollutants were higher than 95.4% for turbidity, $12.7{\sim}20.1%\;for\;COD_{Mn},\;0.0{\sim}6.4%\;for\;NH_3-N,\;1.9{\sim}4.6%$ for T-N and $34.9{\sim}88.4%$ for T-P.

Effect of Various Parameters on Stress Distribution around Holes in Mechanically Fastened Composite Laminates (기계적으로 체결된 복합재료 평판에서 다양한 인자의 영향에 따른 원공 주위의 응력분포)

  • Choi Jae-Min;Chun Heoung-Jae;Byun Joon-Hyung
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • With the wide applications of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joints have become a very important research area because the joints are often the weakest areas in composite structures. This paper presents an analytical study of the stress distributions in mechanically single-fastened and multi-fastened composite laminates. The finite element models which treat the pin and hole contact problem using a contact stress analysis are described. A dimensionless stress concentration factor is used to compare the stress distributions in composite laminates quantitatively In the case of single-pin loaded composite laminate, the effects of stacking sequence, the ratio of a hole diameter and the width of a laminate (W/D ratio), the ratio of hole diameter and distance from edge to hole (E/D ratio), friction coefficient and clamping force are considered. In the case of multi-pin loaded composite laminate, the influence of the number of pins, pitch distance, number of rows, row spacing and hole pattern are considered. The results show that P/D ratio and E/D ratio affect more on stress distributions near the hole boundary than the other factors. In the case of multi-pin loaded composite laminate, the stress concentration in the double column case is better than the other cases of multi-pin loaded composite laminate.

Adsorption Characteristics of Aqueous Phosphate Using Biochar Derived from Oak Tree (참나무 바이오차의 인산염 인(PO4-P) 흡착특성)

  • Choi, Yong-Su;Hong, Seung-Gil;Kim, Sung-Chul;Shin, Joung-Du
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.60-67
    • /
    • 2015
  • Objective of this study was to investigate adsorption characteristics of $PO_4-P$ to biochar produced from oak tree in respective to reduce eutrophication from runoff water in the cropland. For adsorption experiment, input amount of biochar was varied from 4 to 20 g/L with 30 mg/L $PO_4-P$ solution. Adsorption amounts and removal rates of $PO_4-P$ was increased at 3 times in 4~14 g/L, and increased at 28.6% in 4~16 g/L, respectively. The maximum adsorption amount ($q_m$) and binding strength constant(b) were calculated as 0.10 mg/g and 0.06 L/mg, respectively. The sorption of $PO_4-P$ to biochar was fitted well by Langmuir model because it was observed that dimensionless constant($R_L$) was 0.37. It was indicated that biochar is favorably adsorbed $PO_4-P$ because this value lie within 0 < $R_L$ < 1. Therefore, biochar produced from oak tree could be used as adsorbent for reduce eutrophication from runoff water in the cropland.

Empennage Design of Solar-Electric Powered High Altitude Long Endurance Unmanned Aerial Vehicle (고고도 장기체공 전기 동력 무인기의 꼬리 날개 설계)

  • Hwang, Seung-Jae;Lee, Yung-Gyo;Kim, Cheol-Wan;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.708-713
    • /
    • 2013
  • KARI is developing a solar-electric powered HALE UAV(EAV-3). For demonstrating the technology, EAV-2H, a down-scaled version of EAV-3, is developed and after EAV-2H's initial flight test, the directional stability and control need to be improved. Thus, the vertical tail and rudder of EAV-2H are redesigned with Advanced Aircraft Analysis(AAA). Size of the rudder is increased from mean chord ratio of rudder to vertical tail, $C_r/C_v(%)=30$ to $C_r/C_v(%)=60$ and size of the vertical tail is reduced 15%. As a result, the directional control to side wind($v_1$) is improved to sideslip angle, ${\beta}(deg)=25^{\circ}$ and $v_1(m/sec)=3.54$. Also, variation of airplane side force coefficient with sideslip angle ($C_{y_{\beta}}$) and variation of airplane side force coefficient with dimensionless rate of change of yaw rate ($C_{y_r}$) are reduced 15% and 22%, respectively to minimize the effect of side wind. The empennage design of EAV-2H is verified with flight tests and applied to design of KARI's solar-electric-powered EAV-3.