• Title/Summary/Keyword: dimensional shrinkage

Search Result 230, Processing Time 0.021 seconds

Studies on Dimensional Properties of Cotton Weft-Knitted Fabrics for outerwear (편성조직과 편성밀도에 따른 외의용 면위 편성포의 형태 안정성에 관한 연구)

  • 김영리
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.1
    • /
    • pp.170-181
    • /
    • 1997
  • The purpose of this study was to determine the effect of knit structure and knit density (machine tightness factor) on the dimensional properties and K1-4 values of weft-knitted fabrics followed over eleven cycles of mechanical relaxation to provide the basic data for constructing weft-knitted fabrics for outwear with excellent dimensional stability The eighteenth weft-knitted fabrics were produced with different knit structure (1$\times$1 rib, half-cardigan rib, half-milano rib, interlock, single pique, crossmiss interlock) and machine tightness factor (loose, medium, tight) for this study. Dimensional properties such as width, lengh, area shrinkage and dimensional parameter (K) of eighteenth knitted fabrics including thickness and bulk property were measured. The results were as follows; 1. The dimensional behavior of the Ix1 rib and interlock in relaxation cycles was anisotropic, i.e., length shrinkage was usually associated with a width expansion, whereas the other weft-kntted fabrics which have tuck or miss loops in the knit structure behaved isotropically, i.e., length and width shrinkages were usually found. It was proposed that the difference in dimensional behavior between these structures was due to the dissimilar nonrelaxed geometrical shapes of the individual structural units forming these weft-knitted structures. The mechanical relaxation shrinkage of weft-knitted cotton fabrics was dependent on the tightness of construction. For a range of fabrics knitted on this study, an increase in fabric tightness caused a decrease in the length shrinkage of the fabric accompanied by an increase in its width shrinkage.

  • PDF

A study of shrinkage and expansion for dental casting process (치과 주조공정의 수축 및 팽창에 관한 연구)

  • Kim, Yung-Hoon
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.107-112
    • /
    • 2020
  • Purpose: This study compares how accurately the specimen produced by the machining method and the rapid prototyping method is produced and how much dimensional error occurs with the finished casting body, and presents the results as experimental comparative data. Methods: Specimens produced using a digital processing method were cast by a conventional dental casting process, and dimensional changes of the finished casting body were measured to compare shrinkage and expansion. Results: In the control group that did not artificially induce large swelling, the dimensional error was the smallest, and the shrinkage and expansion reactions cannot be elimainated in all processes. Conclusion: The shrinkage and expansion depend on the given conditions, so if there is a change in the traditional dental casting process, it is necessary to adjust all the parameters to obtain an accurate casting body.

Tensile Behavior of Reinforced Concrete Member due to Restrained Shrinkage (구속된 건조수축이 철근콘트리트 인장거동에 미치는 영향)

  • 안태송;김진철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.315-320
    • /
    • 1998
  • The experimental set-up and one-dimensional analytical model have been developed to investigate the tensile behavior of reinforced concrete member due to restrained drying shrinkage. The experimental results have been compared with the analytical prediction of the maximum residual stress of steel and concrete due to restrained shrinkage. The tensile residual stress concrete by one-dimensional bilinear model shows 0.19 and 0.63 of tensile strength for 0.83% and 3.29 of steel ratio. The residual tensile stress of concrete increases as the steel ratio increases. The effect of steel fiber has not influenced the residual stress due to restrained shrinkage of concrete.

  • PDF

The effects of knit stitches on the knit construction and the dimensional stability to washing and drying of wool weft-knitted fabrics (세탁과 건조에 따른 양모 위편성물의 편성조직별 형태 변화)

  • Park, Seeun;Baek, Seong Phil;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • The purpose of this study is to analyze the structural properties of 100% wool fabrics knitted with various stitch types and to evaluate dimensional stability from shrinkage in wet cleaning and drying. Materials were weft-knitted from twenty-four different stitches with 7 gauge using a computerized flatbed knitting machine. Weight, thickness, density, and length were measured. A domestic washing machine and a tumble dryer were used for the shrinkage test. The results are as follows: Knitted fabrics were divided into 3 groups based on weight per unit area. Porous knits show light weight whilst milano, pintuck, rib stitches belong to the heaviest group. A positive correlation between weight and thickness was found and the same result was obtained for wale density and weight. Dimensional shrinkage of knitted fabrics was increased during repetitive wet cleaning and drying regardless of knit stitches. Especially, fabrics knitted with float, tuck, cable, and links & links stitches samples were contracted more than 15% in the first treatment whereas 2x1 rib stitch showed 1% shrinkage rate. Fisherman and milano stitches contracted in both course and wale direction with similar shrinkage rates. However, porous knits with float and tuck stitches shrank in course direction by 20% as well as cable samples contracted from 5% to 20% after repeated washing and drying. On the other hand, 30% and 15% contraction of wale direction occurred in orderly float and links & links stitches, respectively. Machine dried knits have a higher shrinkage rate than air-dried knits, but the drying method did not affect to the direction of contraction. In conclusion, variations of knit, tuck, and float stitches affect knit construction and dimensional stability from shrinkage in wet cleaning and drying of wool knitted fabrics.

Influence of WIP conditions on dimensional change of LTCC sheet (온간 정수압 공정 조건에 따른 LTCC sheet의 수축률)

  • Jeong, M.S.;Yoon, Y.H.;Rhim, S.H.;Yoon, S.M.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.507-511
    • /
    • 2008
  • LTCC (Low Temperature Co-fired Ceramic) has been successfully applied to ceramic substrates for circuits and micro-fluidic systems and has proven its superior performance in a variety of applications. The prediction of shrinkage in LTCC process is an important for dimensional control of micro LTCC products which has influences on electronic characteristics. For avoiding the unpredictable shrinkage of LTCC during the sintering which makes accurate placement of the circuit devices difficult, pre-processes such as WIP (Warm Isostatic Pressing) and lamination must be modified. The objective of the present investigation is to establish a proper WIP conditions for near net shape fabrication of LTCC products. This paper discusses the influence of WIP conditions on the dimensional change of LTCC sheet. In the investigation, it is shown that the shrinkage values of sheets depend on WIP conditions and sheet directions. This work is a quantitative evaluation of the effect of WIP pressure on shrinkage of LTCC sheet. Additionally, the results show anisotropic shrinkage behaviour of sheet during LTCC process.

  • PDF

A Study on the Temperature Distribution and Deformation of Case in Shrinkage Fit Process(II) - Deformation Measurement and Deformation Analysis Model - (열박음 공정이 케이스의 온도분포 및 변형에 미치는 영향(II) - 변형 계측 및 변형 해석 모델 정립 -)

  • 장경복;정진우;강성수;최규원;박찬우;조상명
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.492-498
    • /
    • 2001
  • In the previous study, temperature monitoring of case about shrinkage fit process was performed and heat transfer model was developed in detail by feedback and tuning among monitoring result, process investigation, and analysis result. The gap element in contact between case and core was effectively used in analysis model. In present study, following things are performed to solve deformation of case due to shrinkage fit process on the basis of previous result. Above all, mechanical material properties of case are measured by case specimen for deformation analysis considering weldment of case. Deformation of case before and after shrinkage fit process is measured, too. Three dimensional deformation model is developed by the comparison and inspection between these experimental data and analysis results. Deformation analysis is simulated with the result of heat transfer analysis, in other words, non-coupled analysis is used. Finally the countermeasure for deformation is brought up through those.

  • PDF

A Study on the Part Shrinkage in Injection Molded Annular Shaped Product for Glass Reinforced Polycarbonate (유리섬유 강화 폴리카보네이트의 환상형상부품 사출성형시 성형수축에 관한 연구)

  • Lee, Mina;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.300-305
    • /
    • 2013
  • Part shrinkage in injection molding is inevitable phenomenon. Thus, it is necessary not only study on the reducing part shrinkage but characterization of part shrinkage. In this study, part shrinkage in injection molded 2.5 dimensional annular shaped specimens has been studied using glass fiber reinforced PC. Annular shaped specimens were designed with various sizes of outer diameter and thickness. Injection temperature, packing time and packing pressure were selected for operational conditions. Profile variations of outer and inner diameters of molded specimens for various operational conditions were investigated. Sizes of outer and inner diameters of injection molded specimens were smaller than the sizes of mold. Part shrinkage decreased as outer diameter and thickness increased. Part shrinkage showed anisotropic behavior and it depended upon gate location. Subsequently, molded specimens were not circular but oval in shape, and showed the largest shrinkage in the direction of gate. It was realized that the mold design such as gate design is important to control the shape of molded products.

A Study on the Shrinkage of Silk Fabric by $Ca(NO_3){_2}$ Solution

  • Choi, Se-Min;Shin, Yu-Ju;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.13 no.3
    • /
    • pp.136-148
    • /
    • 2009
  • The phenomenon of the shrinkage of silk fibers induced by inorganic salts including LiBr, $Ca(NO_3){_2}$, and $CaCl_2$, has been studied up to the present as one of the finishing methods of silk. It is expected that the shrinkage phenomenon may greatly contribute to the realization of the high sensibility of silk fibers. Especially the shrinkage enables the expression of three-dimensional appearance of silk fabrics along with the improvements in dimensional stability, resilience in stretching, and comfort. Numerous theoretical studies on the contraction phenomenon by $Ca(NO_3){_2}$ have been conducted so far. These studies have focused mostly on the silk fibers. It is difficult to find studies on silk fabrics. The negative aspects of the finishing are such as strength drop, yellowish discoloration, and fiber damage. These should also be considered as well as the positive aspects. In this study, the phenomenon of salt shrinkage is diversely reviewed by applying $Ca(NO_3){_2}$ solution for the silk fabrics as objects. The changes in the air permeability, thickness, and color were investigated with focus on the shrinkage of the silk fabrics according to the changes in treatment conditions. Some findings from this study are as follows: Within short period of time at the initiation of salt shrinkage, the salt shrinkage proceeds effectively. In the case of concentration of 47.4%, or 46.3% of $Ca(NO_3){_2}$ solution, appropriate treatment time seems to be 20seconds, or $2{\sim}8$minutes, respectively. Excessive shrinkage is obtained when lower liquor ratio is adopted. As a result, the condition is acting extremely disadvantageously against the thickness and yellow discoloration aspects.

The Effects of Washing and Drying on the Dimensional Stability of Woven Fabrics with and without Spandex (세탁 및 건조과정에 의한 스판덱스 혼방 직물의 변형 비교)

  • Yun, Changsang;Ko, Yerin;Song, Gyeong Hee;Shin, Hyodam;Park, Chung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.3
    • /
    • pp.458-467
    • /
    • 2017
  • There is increased interest in clothes dryers and garments made of spandex-blend woven fabrics; however, there is limited information available for the laundering and drying these clothes. This study investigates the effects of washing and drying on shrinkage, skewness, and wrinkle for woven fabrics with and without spandex. When spandex with good elastic recovery was blended, the deformed shape from washing and drying improved skewness and wrinkle by easily returning to its original shape. However, these properties had a negative effect on shrinkage in terms of length and area change. When the influence of clothes maintenance was classified, the drying process had the biggest influence of 58%, followed by spinning-rinsingwashing. Tumble drying, in which the fabric is exposed to mechanical force and heat for a long period, had more negative effects on the dimensional stability than line drying. The spandex blend had the effect of preventing skewness and wrinkle in garments, but it was also shown to accelerate shrinkage by garment maintenance cycles. It was important to control drying in order to reduce shrinkage during the maintenance process; consequently, this had the greatest influence on the dimensional stability of fabrics. Therefore, line drying was more advantageous for spandex-blend fabrics than tumble drying in terms of management for shrinkage, skewness, and wrinkle.

A COMPARATIVE STUDY ON THE COMPOSITE RESTORATION DESIGN AND PLACEMENT METHODS USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS (광중합 콤포짓트레진의 수복형태 및 방법에 관한 삼차원 유한요소분석법적 비교 연구)

  • Lee, Jung-Taek;Yim, Soon-Ho;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.133-149
    • /
    • 1998
  • Clinical application of composite resin recently draw great concerns in dentistry. Especially due to advantages such as esthetics, adhesiveness, simple clinical procedures, various shapes and kinds of composite resins are widely being applied to prosthodontics, conservative dentistry, and orthodontics. But, clinical problems attributable to the polymerization shrinkage of composite resin have been proposed, and we have to regard clinical problems such as secondary caries, loss of restoration, fracture of the surrounding tooth structure, marginal discoloration, and tooth sensitivity, and many portions are remained to be overcome. Therefore, this study attempts to analyze stress distribution between resin and tooth structure which is generated during polymerization shrinkage of composite resin using three dimensional finite element method. Three dimensional finite element models with conventional box-shape cavity and erosion/abrasion type V-shape lesion cavity in upper central incisor were developed. These cavities were filled with four different types of placement techniques. (bulk filling, horizontal increment filling, oblique occlusal increment filling, oblique gingival increment filling) The stresses generated by polymerization shrinkage of composite resin were calculated. The results analyzed with three dimensional finite element method were as follows : 1. The increment filling technique showed the highest maximum normal stress in both conventional box-shape and V-shape cavities and showed a tendency to decrease after complete polymerization. 2. The bulk filling technique resulted in increased stresses during the curing process in both conventional box-shape and V-shape cavities and the highest maximum normal stress occurred after complete polymerization. 3. The bulk filling resulted in the lowest maximum normal stress in both box-shape and V-shape cavities 4. Regardless of placement method, in conventional box-shape cavity, the maximum normal stress increased in dentin floor, enamel, dentin sequence and in V-shape cavity, the maximum normal stress increased in enamel, dentin sequence.

  • PDF