• Title/Summary/Keyword: dimension reduction method

Search Result 250, Processing Time 0.024 seconds

3D Data Dimension Reduction for Efficient Feature Extraction in Posture Recognition (포즈 인식에서 효율적 특징 추출을 위한 3차원 데이터의 차원 축소)

  • Kyoung, Dong-Wuk;Lee, Yun-Li;Jung, Kee-Chul
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.435-448
    • /
    • 2008
  • 3D posture recognition is a solution to overcome the limitation of 2D posture recognition. There are many researches carried out for 3D posture recognition using 3D data. The 3D data consist of massive surface points which are rich of information. However, it is difficult to extract the important features for posture recognition purpose. Meanwhile, it also consumes lots of processing time. In this paper, we introduced a dimension reduction method that transform 3D surface points of an object to 2D data representation in order to overcome the issues of feature extraction and time complexity of 3D posture recognition. For a better feature extraction and matching process, a cylindrical boundary is introduced in meshless parameterization, its offer a fast processing speed of dimension reduction process and the output result is applicable for recognition purpose. The proposed approach is applied to hand and human posture recognition in order to verify the efficiency of the feature extraction.

Dimension reduction for right-censored survival regression: transformation approach

  • Yoo, Jae Keun;Kim, Sung-Jin;Seo, Bi-Seul;Shin, Hyejung;Sim, Su-Ah
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.259-268
    • /
    • 2016
  • High-dimensional survival data with large numbers of predictors has become more common. The analysis of such data can be facilitated if the dimensions of predictors are adequately reduced. Recent studies show that a method called sliced inverse regression (SIR) is an effective dimension reduction tool in high-dimensional survival regression. However, it faces incapability in implementation due to a double categorization procedure. This problem can be overcome in the right-censoring type by transforming the observed survival time and censoring status into a single variable. This provides more flexibility in the categorization, so the applicability of SIR can be enhanced. Numerical studies show that the proposed transforming approach is equally good to (or even better) than the usual SIR application in both balanced and highly-unbalanced censoring status. The real data example also confirms its practical usefulness, so the proposed approach should be an effective and valuable addition to usual statistical practitioners.

Reliability Analysis Method with Variable Sampling Points (가변적인 샘플링을 이용한 신뢰도 해석 기법)

  • Yook, Sun-Min;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1162-1168
    • /
    • 2008
  • This study provides how the Dimension Reduction (DR) method as an efficient technique for reliability analysis can acquire its increased efficiency when it is applied to highly nonlinear problems. In the highly nonlinear engineering systems, 4N+1 (N: number of random variables) sampling is generally recognized to be appropriate. However, there exists uncertainty concerning the standard for judgment of non-linearity of the system as well as possibility of diverse degrees of non-linearity according to each of the random variables. In this regard, this study judged the linearity individually on each random variable after 2N+1 sampling. If high non-linearity appeared, 2 additional sampling was administered on each random variable to apply the DR method. The applications of the proposed sampling to the examples produced the constant results with increased efficiency.

  • PDF

Principal Component Transformation of the Satellite Image Data and Principal-Components-Based Image Classification (위성 영상데이터의 주성분변환 및 주성분 기반 영상분류)

  • Seo, Yong-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.24-33
    • /
    • 2004
  • Advances in remote sensing technologies are resulting in the rapid increase of the number of spectral channels, and thus, growing data volumes. This creates a need for developing faster techniques for processing such data. One application in which such fast processing is needed is the dimension reduction of the multispectral data. Principal component transformation is perhaps the mostpopular dimension reduction technique for multispectral data. In this paper, we discussed the processing procedures of principal component transformation. And we presented and discussed the results of the principal component transformation of the multispectral data. Moreover principal components image data are classified by the Maximum Likelihood method and Multilayer Perceptron method. In addition, the performances of two classification methods and data reduction effects are evaluated and analyzed based on the experimental results.

  • PDF

The Design and Practice of Disaster Response RL Environment Using Dimension Reduction Method for Training Performance Enhancement (학습 성능 향상을 위한 차원 축소 기법 기반 재난 시뮬레이션 강화학습 환경 구성 및 활용)

  • Yeo, Sangho;Lee, Seungjun;Oh, Sangyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.7
    • /
    • pp.263-270
    • /
    • 2021
  • Reinforcement learning(RL) is the method to find an optimal policy through training. and it is one of popular methods for solving lifesaving and disaster response problems effectively. However, the conventional reinforcement learning method for disaster response utilizes either simple environment such as. grid and graph or a self-developed environment that are hard to verify the practical effectiveness. In this paper, we propose the design of a disaster response RL environment which utilizes the detailed property information of the disaster simulation in order to utilize the reinforcement learning method in the real world. For the RL environment, we design and build the reinforcement learning communication as well as the interface between the RL agent and the disaster simulation. Also, we apply the dimension reduction method for converting non-image feature vectors into image format which is effectively utilized with convolution layer to utilize the high-dimensional and detailed property of the disaster simulation. To verify the effectiveness of our proposed method, we conducted empirical evaluations and it shows that our proposed method outperformed conventional methods in the building fire damage.

Vowel Recognition Using the Fractal Dimensioin (프랙탈 차원을 이용한 모음인식)

  • 최철영
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.364-367
    • /
    • 1994
  • In this paper, we carried out some experiments on the Korean vowel recognition using the fractal dimension of the speech signals. We chose the Mincowski-Bouligand dimensioni as the fractal dimension, and computed it using the morphological covering method. For our experiments, we used both the fractal dimension and the LPC cepstrum which is conventionally known to be one of the best parameters for speech recognition, and examined the usefulness of the fractal dimension. From the vowel recognition experiments under various consonant contexts, we achieved the vowel recognition error rats of 5.6% and 3.2% for the case with only LPC cepstrum and that with both LPC cepstrum and the fractal dimension, respectively. The results indicate that the incorporation of the fractal dimension with LPC cepstrum gies more than 40% reduction in recognition errors, and indicates that the fractal dimension is a useful feature parameter for speech recognition.

  • PDF

Bayesian Reliability Analysis Using Kriging Dimension Reduction Method (KDRM) (크리깅 기반 차원감소법을 이용한 베이지안 신뢰도 해석)

  • An, Da-Wn;Choi, Joo-Ho;Won, Jun-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.602-607
    • /
    • 2008
  • A technique for reliability-based design optimization(RBDO) is developed based on the Bayesian approach, which can deal with the epistemic uncertainty arising due to the limited number of data. Until recently, the conventional RBDO was implemented mostly by assuming the uncertainty as aleatory which means the statistical properties are completely known. In practice, however, this is not the case due to the insufficient data for estimating the statistical information, which makes the existing RBDO methods less useful. In this study, a Bayesian reliability is introduced to take account of the epistemic uncertainty, which is defined as the lower confidence bound of the probability distribution of the original reliability. In this case, the Bayesian reliability requires double loop of the conventional reliability analyses, which can be computationally expensive. Kriging based dimension reduction method(KDRM), which is a new efficient tool for the reliability analysis, is employed to this end. The proposed method is illustrated using a couple of numerical examples.

  • PDF

A Study on Robust Design Optimization of Layered Plates Bonding Process Considering Uncertainties (불확정성을 고려한 적층판 결합공정의 강건최적설계)

  • Lee, Woo-Hyuk;Park, Jung-Jin;Choi, Joo-Ho;Lee, Soo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.113-120
    • /
    • 2007
  • Design optimization of layered plates bonding process is conducted by considering uncertainties in a manufacturing process, in order to reduce the crack failure arising due to the residual stress at the surface of the adherent which is caused by different thermal expansion coefficients. Robust optimization is peformed to minimize the mean as well as its variance of the residual stress, while constraining the distortion as well as the instantaneous maximum stress under the allowable reliability limits. In this optimization, the dimension reduction (DR) method is employed to quantify the reliability such as mean and variance of the layered plate bonding. It is expected that the DR method benefits the optimization from the perspectives of efficiency, accuracy, and simplicity. The obtained robust optimal solution is verified by the Monte Carlo simulation.

A Study on Robust Design Optimization of Layered Plates Bonding Process Considering Uncertainties (적층판 결합공정의 불확정성을 고려한 강건최적설계)

  • Choi Joo-Ho;Lee Woo-Hyuk;Youn Byeng-Dong;Xi Zhimin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.836-840
    • /
    • 2006
  • Design optimization of layered plates bonding process is conducted to achieve high product quality by considering uncertainties in a manufacturing process. During the cooling process of the sequential sub-processes, different thermal expansion coefficients lead to residual stress and displacement. thus resulting in defects on the surface of the adherent. So robust process optimization is performed to minimize the residual stress mean and variation of the assembly while constraining the distortion as well as the instantaneous maximum stress to the allowable limits. In robust process optimization, the dimension reduction (DR) method is employed to quantify both reliability and quality of the layered plate bonding. Using this method. the average and standard deviation is estimated. Response surface is constructed using the statistical data obtained by the DRM for robust objectives and constraints. from which the optimum solution is obtained.

  • PDF

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.