• Title/Summary/Keyword: dilatancy

Search Result 100, Processing Time 0.023 seconds

Selection of design friction angle: a strain based empirical method for coarse grained soils

  • Sancak, Emirhan;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • In the design of geotechnical structures, engineers choose either peak or critical state friction angles. Unfortunately, this selection is based on engineer's preference for economy or safety and lacks the assessment of the expected level of deformation. To fill this gap in the design process, this study proposes a strain based empirical method. Proposed method is founded on the experimentally supported assumption that higher dilatancy angles result in more brittle soil response. Using numerous triaxial test data on ten different soils, an empirical design chart is developed that allows the estimation of shear strain at failure based on soil's peak dilatancy angle and mean grain diameter. Developed empirical chart is verified by conducting a small scale retaining wall physical model test. Finally, a design methodology is proposed that makes the selection of design friction angle in structured way possible based on the serviceability limits of the proposed structure.

Comprarison of Yasufuku's Single Hardening Constitutice Model and Lade's Double Hardening Constitutive Model for Compacted Weathered Granite Soil (다짐화강토에 대한 Yasufuku 의 단일항복면 구성모델과 Lade의 복합항복면 구성모델의 비교)

  • 정진섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.91-100
    • /
    • 1999
  • Tow constitutive models for weathered granite soil, Yasufuku's constitutive model with a single yield surface and Lade's constitutive model with two intersectiong yield surface compared in terms of their capabilities to accurately capture the observed behavior of compacted weathered grainite soil for various stress-paths. Both the single surface and the double surface models capture the experimentally observed behavior at a variety of stress-paths with good accuracy. The double surface model may model the observed compacted weathered granite soil behavior with better accuracy for proportational loading with increasing stress, but the single surface model may model dilatancy property with better accuracy for p-constant loading with increasing stress ratio.

  • PDF

The Study on Liquefaction Characteristics of Silty Sand Soils by Cyclic Triaxial Test (반복삼축시험에 의한 실트 모래 지반의 액상화 특성 연구)

  • Lee, Song;Jeon, Je-Sung;Kim, Tae-Hwun
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.133-152
    • /
    • 1999
  • The cyclic triaxial test was carried out to research liquefaction characteristics and sample disturbance effects of silty sand soils at the west coast in Korea. First, liquefaction in silty sand was generated when axial strain approached to $\pm10%$ of strain and behavior of pore pressure was similar to the formula suggested by Seed, Martin, and Lysmer(1975). Also, it was found that dilatancy was generated at failure. Secondly, the liquefaction evaluation methods suggested by many researchers were carried out and the results were compared. In these methods the weak depth in liquefaction was similar and the method carried out by cyclic triaxial test on remolded sample showed the least safety factor. Thirdly the stress ratio by cyclic triaxial test was compared with that obtained from SPT N-value as a kind of empirical methods. It was found that the effect of sample disturbance was relatively small when SPT N-value was less than 20, but there were large differences in safety factor and resistance of liquefaction in soil by the effects of disturbance and remolding when SPT N-value was more than 20.

  • PDF

An Anisotropic Hardening Constitutive Model for Dilatancy of Cohesionless Soils : II. Verification (사질토의 체적팽창을 고려한 비등방경화 구성모델 : II. 검증)

  • Oh, Se-Boong;Park, Hyun-Il;Shin, Dong-Hoon;Kim, Wook;Kwon, Oh-Kyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.85-94
    • /
    • 2004
  • In the companion paper, a constitutive model was proposed in order to represent brittleness and dilatancy for cohesionless soils. An optimized design methodology was proposed on the basis of real-coded genetic algorithm in order to determine parameters fir the proposed model systematically. The material parameters were then determined by that algorithm. In order to verify the proposed model, triaxial tests were peformed under $K_0$ conditions for weathered soils. In addition, the results of istropic compressed triaxial tests for granular materials verified the proposed model. For those results the brittle stress-strain relationship and the dilatancy could be modeled reasonably by the proposed model. As a result it was found that the proposed model can appropriately represent the behavior on weathered soil and granular soil.

Strength Characteristics in Drained Triaxial Tests on Granular Materials (사질토의 배수삼축압축시험에서의 강도특성)

  • 장병유;송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.3
    • /
    • pp.33-42
    • /
    • 1992
  • The shear strength of cohesionless Soils results from particle-to-particle friction and structural resistance by interlocking. And, the shear strength of soils is subjected to vary depending on the internal states and external condtions. If the volume change occurring in the soils and stress-strain relationships under the internal and external changes can accrurately he described, it is possible to predict the behaviors of soils. To accomplish these objectives a series of drained triaxial compression tests and isotropic compression test was performed on the Banwol sand at different relative densities ranging from 20% to 80% and different confining pressures ranging from 0.4kgf/cm$^2$ to l2kgf/cm$^2$. The results and main conclusions of the study are summarized as follows; 1.When the relative density or the confining pressure is increased, the maximum deviator stress is increased. The ratio of the maximum deviator stress and the confining pressure is linearly proportional to the relative density. 2.It is observed that the dilatancy depends not only upon its relative density but also the confining stress, and that the maximum deviator stress is obtained after the diatancy occurs. 3.The volume of sands undergoes initial contraction prior to the dilatancy occurred by strain softening. The dilatancy rate eventually approaches the critical state or a constant volume. 4.At lower strains, Poisson's ratio approaches a certain minimum value regadless of the state of materials. At larger strains, however, the ratio is increased as the relative density is increased. 5.It is observed that the modulus of elasticity is linearly proportional to the relative density and the pressure. 6.When the relative density is increased, the friction angle of sands is linearly increased. 7.When the relative density is increased, the expansion index and the compression index are linearly decreased, and the ratio of the two is about 1/3.

  • PDF

Modification of Terzaghi's Earth Pressure Formula on Tunnel Considering Dilatancy of Soil (지반의 팽창성을 고려한 터널의 테르자기 토압공식 수정)

  • Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Yong;Shin, Baek-Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, Terzaghi's formula was modified to solve problems considering the dilatancy effect of the soil for estimating the earth pressure acting on tunnel. It is performed for the comparison with Terzaghi's formula and modified Terzaghi's formula, tunnel model test result of Kobe University Rock Mechanics Laboratory. From comparison results of the earth pressure acting on tunnel, the earth pressure calculated by the Terzaghi's formula was estimated largest value. The earth pressure measured through the tunnel model test was least value. The difference between the earth pressure derived from Terzaghi's original formula and that derived from the modified formula was caused by the dilation effect, which was caused by the soil volume change. The difference between the earth pressure derived from the modified formula and the earth pressure measured through the tunnel model test, earth pressure results from the energy making failure surface. The results of FEM analysis were almost consistent with the results of mathematical analysis.

Characteristics of Shear Behavior for Coarse Grained Materials Based on Large Scale Direct Shear Test (III) - Final Comprehensive Analysis - (대형직접전단시험을 이용한 조립재료의 전단거동 특성 (III) - 최종 종합 분석 -)

  • Lee, Dae-Soo;Kim, Kyoung-Yul;Hong, Sung-Yun;Oh, Gi-Dae;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.39-54
    • /
    • 2009
  • Large scale direct shear tests were carried out to analyze the shear behavior of crushed rocks at local representative quarries. Shear strength for each specimen was derived and the effects on shear behavior induced by the variation of factors such as particle size, water immersion, density, uniformity coefficient, and particle breakage were evaluated and quantitatively compared with previous studies. The opportunity was also taken to identify stress-dilatancy relation of crushed rocks following the energy-based theory and friction coefficients at critical state as well as peak friction angles and dilation angles were estimated. As a result of tests it was found that uniaxial compressive strength and particle breakage of the parent rocks have crucial effect on internal friction angles; in addition, dilatancy at the failure showed strong relationship as well.

Pullout Resistance of Pressurized Soil-Nailing by Cavity Expansion Theory (공팽창이론에 의한 압력식 쏘일네일링의 인발저항력 산정)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.35-46
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of mean normal stress and the increase of coefficient of pullout friction. From laboratory tests, it was found that dilatancy angle could be estimated by modified cavity expansion theory using the measured wall displacements. The radial displacement increases with dilatancy angle decrease and the dilatancy angle increases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the modified cavity expansion theory.

Development of Constitutive Model for the Prediction of Behaviour of Unsaturated Granular Soil (불포화 사질토의 거동예측을 위한 구성식 개발)

  • 송창섭;장병욱
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.43-54
    • /
    • 1995
  • The aim of the work described in this paper is to develope a constitutive model for the prediction of an unsaturated soil and to confirm the application'of the model, which is composed of the elastic and plastic part in consideration of the matric suction and the net mean stress. From test results, volume changes and deviator stresses are analyzed at each state and their relationships are formulated. The application of the model to silty sands is confirmed by the comparison between test and predicted results. During drying -wetting and loading -unloading processes for isotropic states, the agreement between predicted and test results are satisfactory. Predicted deviator stresses are well agreed with test results in shearing process. Overall acceptable predictions are reproduced in high confining pressure. Usefulness of the model is confirmed for the unsaturated soil except volumetric strain, which is not well agreed with the test results due to deficiency of dilatancy of the model in low confining pressure. It is, therefore. recommended to study the behavior of dilatancy for an unsaturated soil.

  • PDF

Estimation of Pull-out force by using modified Direct Shear Apparatus (개설된 직접전단시험기(CNS)를 이용한 보강재의 인발력 추정)

  • 유병선;이학무;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.145-154
    • /
    • 2003
  • When a nail pulled out in dense, granular soil, the soil in the vicinity of the nail tends to dilate, but its dilatancy results in a normal stress concentration at the soil/nail interface, thereby increasing the pull-out resistance of the inclusion. It is thought to be occurring within the resistance zone where the soil mass is at stationary state and the reinforcement are held in position by the soil, due to the friction or bond. In this paper, A series of direct shear and interface tests were conducted by using so called‘Constant Normal Stiffness Test Apparatus’which was modified and improved from the conventional direct shear box test rig. Unlikely the normal shear box test, this enables to simulate the different constraint effects of surrounding soil during shear under the conditions of constant stress and volume, constant normal stiffness. The aim of the research programme is to get better understanding of pull-out bond mechanism, thus to explore the possibility of evaluating the pull-out bond capacity of soil/reinforcement at the preliminary design stage from the laboratory test.

  • PDF