• Title/Summary/Keyword: digitizing of roughness

Search Result 4, Processing Time 0.017 seconds

Development of a 3D Roughness Measurement System of Rock Joint Using Laser Type Displacement Meter (레이저 변위계를 이용한 암석 절리면의 3차원 거칠기 측정기 개발)

  • 배기윤;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.268-276
    • /
    • 2002
  • In this study, a 3D coordinate measurement system equipped with a laser displacement meter for digitizing rock joint surface was established and the digitized data were used to calculate several roughness parameters. The parameters used in this study were micro avenge inclination $angle(i_{ave})$, average slope of joint $asperity(SL_{ ave})$, root mean square of $i-angle(i_{rms})$, standard deviation of height(SDH), standard deviation of $i-angle(SD_i)$, roughness profile $index(R_P)$, and fractal dimension(D). The relationships between the roughness parameters based on the digitzation of the surface profile were analyzed. Since the measured value varied according to the degree of reflection and the variation of colors at the measuring point, rock joint surface was painted in white to minimize the influence of the surface conditions. The comparison of the measured values and roughness parameters before and after painting revealed the better consequence from measurement on the painted surfaces. Also, effect of measuring interval was studied. As measured interval was increased, roughness parameters were exponentially decreased. The incremental sequence of degree of decrease was $SDH\; i_{ave},\; i_{rms},\; SD_i,\;and\; R_ p-1$. As a result of comparison of parameters from pin-type measurement system and laser type measurement system, all value of parameters were higher when laser-type measurement system was used, except SDH.

A New Quantification Method of Rock Joint Roughness (I) - A Close Assessment of Problems (암석 절리면 거칠기의 정량화에 대한 연구 (I) - 문제점의 규명)

  • Hong, Eun-Soo;Nam, Seok-Woo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.269-283
    • /
    • 2005
  • To figure out the cause of underestimating the roughness and shear strength of rock joints suggested by numerous researchers, we analyzed roughness mobilization characteristics, characteristics of roughness parameters, effects of sampling interval, and waviness for roughness parameters. It was found out that lack of understanding of the roughness mobilization characteristics, inappropriate applications of roughness parameters, and effect of aliasing provide a main reasons for those problems. Several practical alternatives for improving those problems were suggested. As far as digitizing methods are concerned, we can find that using a 3D scanner can give a relatively effective result. To avoid aliasing, sampling interval should be less than one-quarter of the minimum asperities. As for the quantification of roughness, it was analyzed that the roughness parameter should be classified into two components depending on the scale of roughness to apply the shear strength model. For classifying the roughness, a framework of the criterion was suggested based on the plastic flow concept for the asperity failure, and the basis for proposing a new alternative shear strength model was established.

  • PDF

Application of New Measurement Method for Improvement of Rock Joint Roughness Underestimation (암석 절리면 거칠기 과소평가의 개선을 위한 새로운 측정방법의 적용)

  • Hong, Eun-Soo;Lee, Joo-Gong;Lee, Jong-Sub;Lee, In-Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.133-142
    • /
    • 2006
  • Many methods have been tried to more correctly measure rock joint roughness. However, true roughness may be distorted and underestimated due to the sampling interval and measurement method. Thus, currently used measurement methods produce a dead zone and distort roughness profiles. The purpose of this study is to suggest new roughness measurement method by a camera-type 3D scanner as an alternative of currently used methods. First, the underestimation of artificial roughness is analyzed by using the current measurement method such as laser profilometry. Second, we replicate eight specimens from two rock joint surfaces, and digitize by a 3D scanner. Then, the roughness coefficient values obtained from eight numbers of 3D surface data and from three hundred twenty numbers of 2D profiles data are analyzed by using current and new measurement methods. The artificial simulation confirms that the sampling interval is one of main factors for the distortion of roughness and shows that inclination of waviness may not be considered any current methods. The experimental results show that the camera-type 3D scanner produces 10% larger roughness values than current methods. As the proposed new method is a fast, high precision and more accurate method for the roughness measurement, it should be a promising technique in this area.

Comparison of the marginal fit of milled yttrium stabilized zirconium dioxide crowns obtained by scanning silicone impressions and by scanning stone replicas

  • Yus, Estefania Aranda;Cantarell, Josep Maria Anglada;Alonso, Antonio Minarro
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.236-244
    • /
    • 2018
  • PURPOSE. To determine the discrepancy in monolithic zirconium dioxide crowns made with computer-aided design and computer-aided manufacturing (CAD/CAM) systems by comparing scans of silicone impressions and of master casts. MATERIALS AND METHODS. From a Cr-Co master die of a first upper left molar, 30 silicone impressions were taken. The 30 silicone impressions were scanned with the laboratory scanner, thus obtaining 30 milled monolithic yttrium stabilized zirconium dioxide (YSZD) crowns (the silicone group). They were poured and the working models were scanned, obtaining 30 milled monolithic yttrium stabilized zirconium dioxide (YSZD) crowns (the plaster group). Three predetermined points were analyzed in each side of the crown (Mesial, Distal, Vestibular and Palatal), and the marginal fit was evaluated with SEM (${\times}600$). The response variable is the discrepancy from the master model. A repeated measures ANOVA with two within subject factors was performed to study significance of main factors and interaction. RESULTS. Mean marginal discrepancy was $22.42{\pm}35.65{\mu}m$ in the silicone group and $8.94{\pm}14.69{\mu}m$ in the plaster group. The statistical analysis showed significant differences between the two groups and also among the four aspects. Interaction was also significant (P=.02). CONCLUSION. The mean marginal fit values of the two groups were within the clinically acceptable values. Significant differences were found between the groups according to the aspects studied. Various factors influenced the accuracy of digitizing, such as the design, the geometry, and the preparation guidance, as well as the texture, roughness and the color of the scanned material.