DOI QR코드

DOI QR Code

Application of New Measurement Method for Improvement of Rock Joint Roughness Underestimation

암석 절리면 거칠기 과소평가의 개선을 위한 새로운 측정방법의 적용

  • 홍은수 (고려대학교 지하공간기술연구소) ;
  • 이주공 ((주)도담엔지니어링) ;
  • 이종섭 (고려대학교 공과대학 사회환경시스템공학과) ;
  • 이인모 (고려대학교 공과대학 사회환경시스템공학과)
  • Received : 2005.11.29
  • Accepted : 2006.01.26
  • Published : 2006.03.30

Abstract

Many methods have been tried to more correctly measure rock joint roughness. However, true roughness may be distorted and underestimated due to the sampling interval and measurement method. Thus, currently used measurement methods produce a dead zone and distort roughness profiles. The purpose of this study is to suggest new roughness measurement method by a camera-type 3D scanner as an alternative of currently used methods. First, the underestimation of artificial roughness is analyzed by using the current measurement method such as laser profilometry. Second, we replicate eight specimens from two rock joint surfaces, and digitize by a 3D scanner. Then, the roughness coefficient values obtained from eight numbers of 3D surface data and from three hundred twenty numbers of 2D profiles data are analyzed by using current and new measurement methods. The artificial simulation confirms that the sampling interval is one of main factors for the distortion of roughness and shows that inclination of waviness may not be considered any current methods. The experimental results show that the camera-type 3D scanner produces 10% larger roughness values than current methods. As the proposed new method is a fast, high precision and more accurate method for the roughness measurement, it should be a promising technique in this area.

암석 절리면의 거칠기를 측정하는 수많은 방법이 제시되었지만 측정간격과 측정방법 때문에 항상 원래의 거칠기를 완벽하게 나타낼 수 없다는 한계가 있었다. 이와 같은 이유로, 현재 사용되고 있는 측정방법에서는 사각지대가 발생하며 거칠기를 왜곡시킨다. 이 연구에서는 현재 널리 사용되고 있는 방식의 대안으로써 카메라 방식의 3D 스캐너를 이용한 새로운 거칠기 측정법을 제시하려고 하였다. 먼저 인공 거칠기의 과소평가 문제를 레이저 프로파일러와 같은 기존의 방법에 의해 해석하였다. 또한, 8개의 시편을 2종의 암석 절리면에서 복제하고 3D 스캐너로 측정하였고, 얻어진 8개의 3D 표면 자료와 320개의 2D 프로파일 자료에 대한 거칠기 계수 값을 기존의 측정방법과 새로운 측정방법을 사용하여 분석 하였다. 해석결과 측정간격이 거칠기 왜곡현상의 원인이 될 수 있다는 것을 확인시켜 주었으며 만곡의 기울기는 기존의 방법으로는 고려할 수 없음을 알 수 있었다. 카메라 방식의 3D 스캐너를 측정방법으로 사용하면 기존의 방법에서 보다 거칠기가 10% 정도 더 크게 평가된 값을 얻을 수 있으며, 실제 프로파일의 형태를 좀 더 명확히 파악할 수 있는 것으로 나타났다. 따라서 새로운 방법이 빠르고 정밀하면서도 정확한 거칠기 측정방법이 될 수 있음을 확인할 수 있었다.

Keywords

References

  1. 김대영(2001) 절리면 거칠기에 따른 암석의 전단거동. 박사학위논문, 한양대학교
  2. 김무중(2000) 3차원 스캐너의 이해와 제품별 특징. CAD & Graphics. 제5호, pp. 169-175
  3. 배기윤, 이정인(2002) 레이저 변위계를 이용한 암석 절리면의 3차원 거칠기 측정기 개발. 터널과 지하공간, 한국암반공학회, Vol. 12, No. 4, pp. 268-276
  4. 류현미, 김석성, 홍석경, 연규황(2002) 위상이동 간섭무늬 투영을 이용한 3차원 형상측정 시스템의 위상계산오차 해석. 한국광학회지, 한국광학회, Vol. 13, No. 3, pp. 182-188
  5. 이상돈(1996) 절리면의 거칠기에 따른 암석의 전단강도 및 변형 특성에 관하여. 석사학위논문, 서울대학교
  6. 이인모, 홍은수, 배석일, 이석원(2002) 암석 절리면 거칠기의 정량화에 따른 절리면 전단강도 모델. 한국지반공학회논문집, 한국지반공학회, Vol. 18, No. 4, pp. 229-238
  7. 이희석(1999) 주기전단 하중하의 암석절리의 역학적 및 수리학적 거동 연구. 박사학위논문, 서울대학교
  8. 홍은수(2005) 거칠기의 발현 특성에 의한 암석 절리 거칠기의 특성화. 박사학위논문, 고려대학교
  9. Barton, N.R. and Choubey, V. (1977) The shear strength of rock joints in theory and practice. Rock Mechanics. Vol. 10, pp. 1-54 https://doi.org/10.1007/BF01261801
  10. Belem, T., Homand-Etienne, F., and Souley, M. (2000) Quantitative Parameters for Rock Joint Surface Roughness. Rock Mech. and Rock Engng. Vol. 33, No. 4, pp. 217-242 https://doi.org/10.1007/s006030070001
  11. Bhushan, B. (2002) Introduction to tribology. John Wiley & Sons Inc., New York, N.Y.
  12. Brown, S.R. and Scholz, C.H. (1985) Broad bandwidth study of the topography of natural rock surfaces. J. Geophys. Res., Vol. 90, No. B14, pp. 125754-125782
  13. Borri-Brunetto, M., Carpinteri, A., and Chiaia, B. (1999) Scaling phenomena due to fractal contact in concrete and rock fractures. Int. J. of Fracture, Vol. 95, pp. 221-238 https://doi.org/10.1023/A:1018656403170
  14. Carr, J.R. and Warriner, J.B. (1989) Relationship between the fractal dimension and joint roughness coefficient. Bull. Assoc. Engrg. Geol., Vol. 26, pp. 253-264
  15. Chae, B.G., Ichikawa, Y., Jeong, G.C., Seo, Y.S., and Kim, B.C. (2004) Roughness measurement of rock discontinuities using a confocal laser scanning microscope and the fourier spectral analysis. Engineering Geology, Vol. 72, pp. 181-199 https://doi.org/10.1016/j.enggeo.2003.08.002
  16. Dove, J.E. and Frost, J.D. (1996) A method for measuring geomembrane surface roughness. Geosynthetics International, Vol. 3, pp. 369-392 https://doi.org/10.1680/gein.3.0067
  17. El Sodani, S.M. (1978) Profilometric analysis of fractures. Metallography, Vol. 11, pp. 246-336
  18. Fardin, N., Stephansson, O., and Jing, L. (2001) The scale dependence of rock joint surface roughness. Int. J. Rock Mech. Min. Sci., Vol. 38, pp. 659-669 https://doi.org/10.1016/S1365-1609(01)00028-4
  19. Feng, Q., Fardin, N., Jing, L., and Stephansson, O. (2003) A new method for in-situ non-contact roughness measurement of large rock fracture surfaces. Rock Mech. and Rock Engng., Vol. 36, No. 1, pp. 3-25 https://doi.org/10.1007/s00603-002-0033-1
  20. Gadelmawla, E.S., Koura, M.M., Maksoud, T.M.A., Elewa, I.M., and Soliman, H.H. (2002) Roughness parameters. J. Materials Processing Tech., Vol. 123, pp. 133-145 https://doi.org/10.1016/S0924-0136(02)00060-2
  21. Gokhale, A.M. and Drury, W.J. (1990) A general method for estimation of fracture surface roughness: part II. theoretical aspects. Metallurgical Transactions A, Vol. 21A, pp. 1193-1199
  22. Gokhale, A.M. and Underwood, E.E. (1990) A general method for estimation of fracture surface roughness: part I. practical considerations. Metallurgical Transactions A, Vol. 21A, pp. 1201-1207
  23. Grasselli, G. and Egger, P. (2003) Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int. J. of Rock Mech. Min. Sci., Vol. 40, pp. 25-40 https://doi.org/10.1016/S1365-1609(02)00101-6
  24. Haberfield, C.M. and Johnston, I.W. (1994) A mechanically-based model for rough rock joints. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 31, No. 4, pp. 279-292 https://doi.org/10.1016/0148-9062(94)90898-2
  25. Haberfield, C.M. and Seidel, J.P. (1999) Some recent advances in the modelling of soft rock joints in direct shear. Ceotechnical and Geological Engineering, Vol. 17, pp. 177-195 https://doi.org/10.1023/A:1008900905076
  26. Homand, F., Belem, T., and Souley, M. (2001) Friction and degradation of rock joint surfaces under shear loads. Int. J. Numer. Anal. Meth. Geomech., Vol. 25, pp. 973-999 https://doi.org/10.1002/nag.163
  27. Hsiung, S.M., Ghosh, A., Ahola, M.P., and Chowdhury, A.H. (1993) Assessment of conventional methodologies for joint roughness coefficient determination. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 30, No. 7, pp. 825-829 https://doi.org/10.1016/0148-9062(93)90030-H
  28. Huang, S.L., Oelfke, S.M., and Speck, R.C. (1992) Applicability of fractal characterization and modelling to rock joint profiles. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 29, pp. 89-98 https://doi.org/10.1016/0148-9062(92)92120-2
  29. Kishida, K., Adachi, T., and Tsuno, K. (2001) Modeling of the shear behavior of rock joints under constant normal confining conditions. Rock Mech. in the National Interest, Elsworth, Tinucci and Heasley, eds, pp. 791-798
  30. Kulatilake, P.H.S.W., Shou, G., and Huang, T.H. (1995) Spectral-based peak-shear-strength criterion for rock joints. J. Geotech. Engrg., ASCE, pp. 789-796
  31. Kulatilake, P.H.S.W. and Um, J. (1999) Requirements for accurate quantification of self-affine roughness using the roughnesslength method. Int. J. Rock Mech. Min. Sci., Vol. 36, pp. 5-18 https://doi.org/10.1016/S0148-9062(98)00170-3
  32. Lanaro, F. (2000) A random field model for surface roughness and aperture of rock fractures. Int. J. Rock Mech. Min. Sci., Vol. 37, pp. 1195-1210 https://doi.org/10.1016/S1365-1609(00)00052-6
  33. Lange, D.A., Jannings, H.M., and Shah, S.P. (1993) Relationship between fracture surface riughness and fracture behaviour of cement paste and mortar. J. Am. Ceram. Soc., Vol. 3, pp. 587-597
  34. Lee, H.S. and Ahn, K.W. (2004) A prototype of digital photogrammetric algorithm for estimating roughness of rock surface. Geosciences Journal, Vol. 8, No. 3, pp. 333-341 https://doi.org/10.1007/BF02910253
  35. Lee, S.G. and De Freitas, M.H. (1988) Quantitative definition of highly weathered granite using the slake durability test. Geotechnique, Vol. 38, No. 4, pp. 635-640 https://doi.org/10.1680/geot.1988.38.4.635
  36. Lee, S.W. (1998) Influence of surface topography on interface strength and counterface soil structure, PhD Thesis, Georgia Institute of Technology, Atlanta, Georgia
  37. Lee, Y.H., Carr, J.R., Barr, D.J., and Hass, C.J. (1990) The fractal dimension as a measure of the roughness of rock discontinuity profile. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 27, pp. 453-464 https://doi.org/10.1016/0148-9062(90)90998-H
  38. Lopez, P., Riss, J., and Archambault, G. (2003) An experimental method to link morphological properties of rock fracture surfaces to their mechanical properties. Int. J. Rock Mech. Min. Sci., Vol. 40, pp. 947-954 https://doi.org/10.1016/S1365-1609(03)00052-2
  39. Maerz, N.H., Franklin, J.A. (1990) Roughness scale effect and fractal dimension. Proc. 1st Int. Workshop on Scale Effects in Rock Masses, Leon, pp. 121-125
  40. Maerz, N.H., Franklin, J.A., and Bennett, C.P. (1990) Joint roughness measurement using shadow profilometry. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 27, pp. 329-343 https://doi.org/10.1016/0148-9062(90)92708-M
  41. Miller, S.M., Mcwilliams, P.C., and Kerkering, J.C. (1990) Ambiguities in estimating fractal dimensions of rock fracture surfaces. Proc. Rock Mech. Contribution and Challenges, Hustruid and Johnson, eds, pp. 471-478
  42. Plesha, M.E. (1987) Constitutive models for rock discontinuties with dilatancy and surface degradation. Int. J. for Num. and Analytical Methods in Geomechanics, Vol. 11, pp. 345-362 https://doi.org/10.1002/nag.1610110404
  43. Reeves, M.J. (1985) Rock surface roughness and frictional strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 22, No. 6, pp. 429-442 https://doi.org/10.1016/0148-9062(85)90007-5
  44. Reich, C., Ritter, R., and Thesing, J. (2000) 3-D shape measurement of complex objects by combining photogrammetry and fringe projection. Opt. Eng., Vol. 39, No. 1, pp. 224-231 https://doi.org/10.1117/1.602356
  45. Santamarina, J.C. and Fratta, D. (1998) Introduction to Discrete Signals and Inverse Problems in Civil Engineering. ASCE press, Virginia
  46. Schreiber, W. and Notni, G. (2000) Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using fringe projection technique. Opt. Eng., Vol. 39, No. 1, pp. 159-169 https://doi.org/10.1117/1.602347
  47. Swan, G. (1983) Determination of stiffness and other joint properties from roughness measurements. Rock Mech. Rock Engrg., Vol. 16, pp. 19-38 https://doi.org/10.1007/BF01030216
  48. Swan, G. and Zongqi, S. (1985) Prediction of shear behaviour of joints using profiles. Rock Mech. and Rock Engrg., Vol. 18, pp. 183-212 https://doi.org/10.1007/BF01112506
  49. Tse, R. and Cruden, D.M. (1979) Estimating joint roughness coefficients. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 16, pp. 303-307 https://doi.org/10.1016/0148-9062(79)90241-9
  50. Turk, N., Gerd, M.J., Dearman, W.R., and Admin, F.F. (1987) Characterization of rock joint surfaces by fractal dimension. Proc. 28th U.S. Symp. Rock Mech., pp. 1223-1236
  51. Wakabayashi, N. and Fukushige, I. (1995) Experimental study on the relation between fractal dimension and shear strength. Fractured and jointed rock masses, Rotterdam, pp. 119-124
  52. Xie, H., Wang, J., and Xie, W. (1997) Fractal effects of surface roughness on the mechanical behavior of rock joints. Chaos, Solitons & Fractals, Vol. 8, No. 2, pp. 221-252 https://doi.org/10.1016/S0960-0779(96)00050-1
  53. Yang, Z.Y., Di, C.C., and Yen, K.C. (2001) The effect of asperity order on the roughness of rock joints. Int. J. Rock Mech. Min. Sci., Vol. 38, pp. 745-752 https://doi.org/10.1016/S1365-1609(01)00032-6
  54. Yu, X. and Vayssade, B. (1991) Joint profiles and their roughness parameters. Int. J. Rock Mech. Min. Sci., Vol. 28, pp. 333-336 https://doi.org/10.1016/0148-9062(91)90598-G