• Title/Summary/Keyword: digital volume correlation

Search Result 47, Processing Time 0.027 seconds

Damage characterization in fiber reinforced polymer via Digital Volume Correlation

  • Vrgoc, Ana;Tomicevic, Zvonimir;Smaniotto, Benjamin;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.10 no.6
    • /
    • pp.545-560
    • /
    • 2021
  • An in situ experiment imaged via X-ray computed tomography was performed on a continuous glass fiber mat reinforced epoxy resin composite. The investigated dogbone specimen was subjected to uniaxial cyclic tension. The reconstructed scans (i.e., gray level volumes) were registered via Digital Volume Correlation. The calculated maximum principal strain fields and correlation residual maps exhibited strain localization areas within the material bulk, thus indicating damage inception and growth toward the specimen surface. Strained bands and areas of elevated correlation residuals were mainly concentrated in the narrowest gauge section of the investigated specimen, as well as on the specimen ligament edges. Gray level residuals were laid over the corresponding mesostructure to highlight and characterize damage development within the material bulk.

Relationship between Side-Necked Volume in a SENB specimen and Plastic Deformation Volume (SENB 시험편의 측면함몰과 소성영역관계)

  • Lee, Jeong-Hyun;Kim, Do-Hyung;Kim, Dong-Hak;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.420-425
    • /
    • 2004
  • Lee and Kang measured side-necking deformation near a crack-tip for CT specimen using Stereoscopic Digital Speckle Photography and Digital Image Correlation. In this work the same technique was applied to SENB specimen. We happened to find that the deformation shape of the side-necking is similar to the one of plastic region estimated by McClictock using slip line theory. Based on volume constancy of plastic deformation as well as this finding, it is expected that a linear relationship holds between the volume of plastic deformation region and the one of side-necking upon the lateral surface of a specimen. To prove the idea, a preliminary study has been performed using 3-D finite element method on a model with modified boundary layer formulation. As the result, it is shown that the idea works well with acceptable error.

  • PDF

Correlation between the Diaphragmatic Contraction Pressure and the Slow Vital Capacity

  • Lee, Jae-Seok;Han, Dong-Wook;Kang, Tae-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.3
    • /
    • pp.47-53
    • /
    • 2019
  • PURPOSE: This study measured the external pressure on abdomen during maximal inspiration. The study determined the correlation between the diaphragmatic contraction pressure and the lung capacities to verify whether or not the measured pressure values can represent diaphragmatic contractility. METHODS: The study included 32 healthy subjects (16 males and 16 females). The researchers fabricated their own diaphragmatic pressure belt (DiP Belt) to measure DCP. DiP Belt device was fixed on the front of the abdomen and the diaphragmatic contractility was measured during maximal inspiration. The lung capacities were measured using a portable digital spirometer device (Pony Fx, COSMED, Italy). A digital spirometer is a device that is used to test the flow of air entering and exiting the lungs. RESULTS: DCP showed significant positive correlations with vital capacity (VC), inspiratory reserve volume (IRV) and inspiratory capacity (IC). Among values of lung capacities, IC showed especially strong positive correlations with the DCP (r =.714, p<.010). For the males, DCP showed significant positive correlations with IRV and IC, and DCP showed significant negative correlation with the expiratory reserve volume (ERV). For the females, DCP showed significant positive correlation with tidal volume (VT), but any significant correlation was not found with any of the other values of lung capacities. CONCLUSION: DCP showed high correlations with IRV and IC associated with inspiratory capacity. Therefore, The DiP Belt can be looked upon as a simple device that is very useful for measuring diaphragmatic contractility.

4D full-field measurements over the entire loading history: Evaluation of different temporal interpolations

  • Ana Vrgoc;Viktor Kosin;Clement Jailin;Benjamin Smaniotto;Zvonimir Tomicevic;Francois Hild
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.503-517
    • /
    • 2023
  • Standard Digital Volume Correlation (DVC) approaches are based on pattern matching between two reconstructed volumes acquired at different stages. Such frameworks are limited by the number of scans (due to acquisition duration), and time-dependent phenomena can generally not be captured. Projection-based Digital Volume Correlation (P-DVC) measures displacement fields from series of 2D radiographs acquired at different angles and loadings, thus resulting in richer temporal sampling (compared to standard DVC). The sought displacement field is decomposed over a basis of separated variables, namely, temporal and spatial modes. This study utilizes an alternative route in which spatial modes are con-structed via scan-wise DVC, and thus only the temporal amplitudes are sought via P-DVC. This meth-od is applied to a glass fiber mat reinforced polymer specimen containing a machined notch, subjected to in-situ cyclic tension, and imaged via X-Ray Computed Tomography. Different temporal interpolations are exploited. It is shown that utilizing only one DVC displacement field (as spatial mode) was sufficient to properly capture the complex kinematics up to specimen failure.

Malaria Epidemic Prediction Model by Using Twitter Data and Precipitation Volume in Nigeria

  • Nduwayezu, Maurice;Satyabrata, Aicha;Han, Suk Young;Kim, Jung Eon;Kim, Hoon;Park, Junseok;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.588-600
    • /
    • 2019
  • Each year Malaria affects over 200 million people worldwide. Particularly, African continent is highly hit by this disease. According to many researches, this continent is ideal for Anopheles mosquitoes which transmit Malaria parasites to thrive. Rainfall volume is one of the major factor favoring the development of these Anopheles in the tropical Sub-Sahara Africa (SSA). However, the surveillance, monitoring and reporting of this epidemic is still poor and bureaucratic only. In our paper, we proposed a method to fast monitor and report Malaria instances by using Social Network Systems (SNS) and precipitation volume in Nigeria. We used Twitter search Application Programming Interface (API) to live-stream Twitter messages mentioning Malaria, preprocessed those Tweets and classified them into Malaria cases in Nigeria by using Support Vector Machine (SVM) classification algorithm and compared those Malaria cases with average precipitation volume. The comparison yielded a correlation of 0.75 between Malaria cases recorded by using Twitter and average precipitations in Nigeria. To ensure the certainty of our classification algorithm, we used an oversampling technique and eliminated the imbalance in our training Tweets.

The Correlation between Abdominal Muscle Strength and Respiratory Function in Stroke Patients (뇌졸중 환자의 배근력과 호흡기능의 상관관계)

  • Kang, Tae-Wook;Lee, Jae-Seok;Han, Dong-Wook
    • PNF and Movement
    • /
    • v.17 no.2
    • /
    • pp.303-310
    • /
    • 2019
  • Purpose: This study aimed to investigate the correlation between abdominal muscle strength and measures of respiratory function in stroke patients. Methods: The study participants comprised 17 (male: 12, female: 5) stroke patients hospitalized at W rehabilitation hospital in Busan, South Korea. Abdominal muscle strength was assessed using a digital manual dynamometer for 5 seconds contacting the sternal notch of the participants to bend the trunk. Respiratory function (forced vital capacity, forced expiratory volume in one second, forced expiratory volume in one second/forced vital capacity, and peak expiratory flow) was assessed using a spirometer. The collected data were analyzed using Pearson's correlation analysis, and the significance level was set 0.05. Results: A statistically significant correlation was found between abdominal muscle strength and forced vital capacity, forced expiratory volume in one second, and peak expiratory flow. However, abdominal muscle strength and forced expiratory volume in one second/forced vital capacity were not significantly correlated. Conclusion: This study demonstrated that there is a relationship between abdominal muscle strength and respiratory function. Exercise programs to strengthen the abdominal muscles are therefore necessary to improve respiratory function in stroke patients.

Assessment of DVC measurement uncertainty on GFRPs with various fiber architectures

  • Bartulovic, Ante;Tomicevic, Zvonimir;Bubalo, Ante;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.15-32
    • /
    • 2022
  • The comprehensive understanding of the fiber reinforced polymer behavior requires the use of advanced non-destructive testing methods due to its heterogeneous microstructure and anisotropic mechanical proprieties. In addition, the material response under load is strongly associated with manufacturing defects (e.g., voids, inclusions, fiber misalignment, debonds, improper cure and delamination). Such imperfections and microstructures induce various damage mechanisms arising at different scales before macrocracks are formed. The origin of damage phenomena can only be fully understood with the access to underlying microstructural features. This makes X-ray Computed Tomography an appropriate imaging tool to capture changes in the bulk of fibrous materials. Moreover, Digital Volume Correlation (DVC) can be used to measure kinematic fields induced by various loading histories. The correlation technique relies on image contrast induced by microstructures. Fibrous composites can be reinforced by different fiber architectures that may lead to poor natural contrast. Hence, a priori analyses need to be performed to assess the corresponding DVC measurement uncertainties. This study aimed to evaluate measurement resolutions of global and regularized DVC for glass fiber reinforced polymers with different fiber architectures. The measurement uncertainties were evaluated with respect to element size and regularization lengths. Even though FE-based DVC could not reach the recommended displacement uncertainty with low spatial resolution, regularized DVC enabled for the use of fine meshes when applying appropriate regularization.

Research on Digital Complex-Correlator of Synthetic Aperture Radiometer: theory and simulation result

  • Jingye, Yan;Ji, Wu;Yunhua, Zhang;Jiang, Changhong;Tao, Wang;Jianhua, Ren;Jingshan, Jiang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.587-592
    • /
    • 2002
  • A new digital correlator fur an airborne synthetic aperture radiometer was designed in order to replace the conventional analog correlator unit which will become very complicated while the number of channels is increasing. The digital correlator uses digital IQ demodulator instead of the intermediate frequency (IF) phase shifter to make the correlation processing performed digitally at base band instead of analogly at IF. This technique has been applied to the digital receiver in softradio. The down-converted IF signals from each pair of receiver channels become low rate base-band digital signals after under-sampled, Digitally Down-Converted (DDC), decimated and filtered by FIR filters. The digital signals are further processed by two digital multipliers (complex correlation), the products are integrated by the integrators and finally the outputs from the integrators compose of the real part and the imaginary part of a sample of the visibility function. This design is tested by comparing the results from digital correlators and that from analog correlators. They are agreed with each other very well. Due to the fact that the digital correlators are realized with the help of Analog-Digital Converter (ADC) chips and the FPGA technology, the realized volume, mass, power consumption and complexity turned out to be greatly reduced compared with that of the analog correlators. Simulations show that the resolution of ADC has an influence on the synthesized antenna patterns, but this can be neglected if more than 2bit is used.

  • PDF

Multi-scale modelling of the blood chamber of a left ventricular assist device

  • Kopernik, Magdalena;Milenin, Andrzej
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.23-40
    • /
    • 2014
  • This paper examines the blood chamber of a left ventricular assist device (LVAD) under static loading conditions and standard operating temperatures. The LVAD's walls are made of a temperature-sensitive polymer (ChronoFlex C 55D) and are covered with a titanium nitride (TiN) nano-coating (deposited by laser ablation) to improve their haemocompatibility. A loss of cohesion may be observed near the coating-substrate boundary. Therefore, a micro-scale stress-strain analysis of the multilayered blood chamber was conducted with FE (finite element) code. The multi-scale model included a macro-model of the LVAD's blood chamber and a micro-model of the TiN coating. The theories of non-linear elasticity and elasto-plasticity were applied. The formulated problems were solved with a finite element method. The micro-scale problem was solved for a representative volume element (RVE). This micro-model accounted for the residual stress, a material model of the TiN coating, the stress results under loading pressures, the thickness of the TiN coating and the wave parameters of the TiN surface. The numerical results (displacements and strains) were experimentally validated using digital image correlation (DIC) during static blood pressure deformations. The maximum strain and stress were determined at static pressure steps in a macro-scale FE simulation. The strain and stress were also computed at the same loading conditions in a micro-scale FE simulation.

Pseudo-strain hardening and mechanical properties of green cementitious composites containing polypropylene fibers

  • Karimpour, Hossein;Mazloom, Moosa
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.575-589
    • /
    • 2022
  • In order to enhance the greenness in the strain-hardening composites and to reduce the high cost of typical polyvinyl alcohol fiber reinforced engineered cementitious composite (PVA-ECC), an affordable strain-hardening composite with green binder content has been proposed. For optimizing the strain-hardening behavior of cementitious composites, this paper investigates the effects of polypropylene fibers on the first cracking strength, fracture properties, and micromechanical parameters of cementitious composites. For this purpose, digital image correlation (DIC) technique was utilized to monitor crack propagation. In addition, to have an in-depth understanding of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. To understand the effect of fibers on the strain hardening behavior of cementitious composites, ten mixes were designed with the variables of fiber length and volume. To investigate the micromechanical parameters from fracture tests on notched beam specimens, a novel technique has been suggested. In this regard, mechanical and fracture tests were carried out, and the results have been discussed utilizing both fracture and micromechanical concepts. This study shows that the fiber length and volume have optimal values; therefore, using fibers without considering the optimal values has negative effects on the strain-hardening behavior of cementitious composites.