• Title/Summary/Keyword: digital sensing

Search Result 920, Processing Time 0.03 seconds

An Analysis on the Design of Motion-Sensing Game Role Selection GUI (체감형 게임에서 캐릭터 선택 GUI 디자인 분석)

  • Huang, HaiBiao;Zheng, LingJing;Ryu, Seuc-HO
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.383-387
    • /
    • 2020
  • This paper studies the GUI design of motion-sensing game character selection. The game's GUI plays a role in transferring information in human-computer interaction. The purpose of this game player-oriented GUI design is to optimize the human-computer interaction, make the operation more user-friendly, reduce the user's cognitive burden, and better adapt to the user's operation needs. This paper combines examples to compare and analyze these three games from three aspects: text, color and form. In the existing motion-sensing game games, the character selection GUI has a design feature of high recognition and strong visibility. Finally, suggestions for GUI design of motion-sensing game games are given. It is hoped that in the future, reference materials will be provided for the GUI design of experience game character selection.

A Robust Resistive Fingerprint Sensor

  • Jung, Seung-Min
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.66-71
    • /
    • 2009
  • A novel sensing scheme using resistive characteristics of the finger is proposed. ESD problem is more harmful than a capacitive fingerprint sensor in a resistive fingerprint sensor, because the sensor plate is directly connected to the sensing cell. The proposed circuit is more robust than conventional circuit for ESD. The sensor plate and sensing cell are isolated by capacitor. The pixel level simple detection circuit is fully digital operation unlike that of the capacitive sensing cell. The sensor circuit blocks are designed and simulated in a standard CMOS $0.35{\mu}m$ process. The proposed circuit is more stable and effective than a typical circuit.

Uncertainty Analysis of Flash-flood Prediction using Remote Sensing and a Geographic Information System based on GcIUH in the Yeongdeok Basin, Korea

  • Choi, Hyun;Chung, Yong-Hyun;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.884-887
    • /
    • 2006
  • This paper focuses on minimizing flood damage in the Yeongdeok basin of South Korea by establishing a flood prediction model based on a geographic information system (GIS), remote sensing, and geomorphoclimatic instantaneous unit hydrograph (GcIUH) techniques. The GIS database for flash flood prediction was created using data from digital elevation models (DEMs), soil maps, and Landsat satellite imagery. Flood prediction was based on the peak discharge calculated at the sub-basin scale using hydrogeomorphologic techniques and the threshold runoff value. Using the developed flash flood prediction model, rainfall conditions with the potential to cause flooding were determined based on the cumulative rainfall for 20 minutes, considering rainfall duration, peak discharge, and flooding in the Yeongdeok basin.

  • PDF

Development of Current and Voltage Sensors for Distribution switchgears (로고스키 코일과 저항 분압기 원리를 이용한 배전급 전류/전압 센서 개발)

  • Choe, W.J.;Sohn, J.M.;Lee, B.W.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.888-890
    • /
    • 2003
  • In the distribution networks, it is required to develop compact and smart current and voltage sensors for compact and digital switchgears. The sensor developed newly adopt the priciple of rogowski coil for current sensing and resistive voltage divider for voltage sensing. The sensing characteristics and reliabilities were improved compared to conventional ones. In the near future, these voltage and current sensing apparatus will be widely used with electronic protection units for the distribution switchgear.

  • PDF

Block Adjustment and Orthorectification for Multi-Orbit Satellite Images

  • Chen, Liang-Chien;Liu, Chien-Liang;Teo, Tee-Ann
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.888-890
    • /
    • 2003
  • The objective of this investigation is to establish a simple yet effective block adjustment procedure for the orthorectification of multi-orbit satellite images. The major works of the proposed scheme are: (1) adjustment of satellite‘s orbit accurately, (2) calculation of the error vectors for each tie point using digital terrain model and ray tracing technique, (3) refining the orbit using the Least Squares Filtering technique and (4) generation of the orthophotos. In the process of least squares filtering, we use the residual vectors on ground control points and tie points to collocate the orbit. In orthorectification, we use the indirect method to generate the orthoimage. Test areas cover northern Taiwan. Test images are from SPOT 5 satellite. Experimental results indicate that proposed method improves the relative accuracy significantly.

  • PDF

Developing on the Soil Moisture Index(SMI) for forecast by using AQUA AMSR-E

  • Park Seung-Hwan;Park Jong-Seo;Park Jeong-Hyun;Kim Kum-Lan;Kim Byung-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.415-418
    • /
    • 2004
  • The Studying is on developing precision of the moisture information on a soil. We used the data of AQUA AMSR-E which were obtained by Direct Receiving System in Korea Meteorological Administration(KMA). Although we know the Soil Moisture Information(SMI) helps the numerical weather model to produce the realistic results, we couldn't do it for the problem on a spatial resolution of the data is too low to apply. So we've tried to develop in a spatial resolution by using the AMSR-E data with a Digital Elevation Model(DEM) and Normal Difference Vegetation Index(NDVI) from AQUA MODIS and compared the difference between their information in statics. The result is more precise than the simple algorithm by a polarization ratio, and we could get the better result to use in forecast practically, if it's apply to get more detail in the vegetation temperature.

  • PDF

Spectrum Sensing System in Software-defined Radio to Determine Spectrum Availability

  • Llames, Gerome Jan M.;Banacia, Alberto S.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.100-106
    • /
    • 2016
  • Spectrum sensing is an integral part of cognitive radio, which seeks to address the perceived spectrum scarcity that is caused by inefficient utilization of the available spectrum. In this paper, a spectrum sensing system using energy detection for analog TV and FM broadcast transmitters as well as modified Integrated Services Digital Broadcasting Terrestrial (ISDB-T) signals is implemented on a software-defined radio platform using GNU' Not Unix (GNU) radio and the N200 Universal Software Radio Peripheral (USRP). Real-time implementation and experimental tests were conducted in Metro Cebu, a highly urbanized area in the southern part of the Philippines. Extensive tests and measurements were necessary to determine spectrum availability, particularly in the TV band. This is in support of the Philippine government' efforts to provide internet connectivity to rural areas. Experimental results have so far met IEEE 802.22 requirements for energy detection spectrum sensing. The designed system detected signals at -114 dBm within a sensing time of 100 ms. Furthermore, the required $P_d({\geq}90)$ and $P_{fa}({\leq}10)$ of the standard were also achieved with different thresholds for various signal sources representing primary users.

Out-of-band Collaborative Spectrum Sensing of CR System in Rayleigh Fading Channel (Rayleigh 페이딩 채널에서 CR 시스템의 외부대역 협력 스펙트럼 센싱)

  • Kang, Bub-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.564-571
    • /
    • 2009
  • In this paper, we propose out-of -band collaborative spectrum sensing scheme in the cognitive radio (CR) base station operated by the multiple frequency channels. Also this paper presents the signal detection results for ATSC digital TV signal as an incumbent signal and derives signal detection probability and false alarm probability for the out-of-band collaborative spectrum sensing scheme in frequency selective Rayleigh fading channel. Numerical results demonstrate that the sensing performance is improved by the out-of-band collaborative spectrum sensing in the case that the incumbent signal powers measured by the CR terminals of the multiple frequency channels are almost similar.

Low Power-loss Current Measurement Technique Using Resistive Sensor and Bypass Switch (바이패스 스위치와 저항센서를 이용한 저손실 전류 측정방법)

  • Lee, Hwa-Seok;Thayalan, I. Daniel Thena;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.416-422
    • /
    • 2012
  • This paper proposes a low power-loss current measurement using a resistor and bypass switch. Conventional current sensing method using a resistor has a disadvantage of power loss which degrades the efficiency of the entire systems. On the other hand, proposed measurement technique operating with bypass-switch connected in parallel with sensing resistor can reduce power loss significantly the current sensor. The propose measurement works for discrete-time sampling of current sensing. Even while the analog-digital conversion does not occur at the controller, the sensing voltage across the sensor still causes ohmic conduction loss without information delivery. Hence, the bypass switch bypasses the sensing current with a small amount of power loss. In this paper, a 90[W] prototype hardware has been implemented for photovoltaic MPPT experimental verification of the proposed low power-loss current measurement technique. From the results, it can be seen that PV power observation is successfully done with the proposed method.

Autonomous hardware development for impedance-based structural health monitoring

  • Grisso, Benjamin L.;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.305-318
    • /
    • 2008
  • The development of a digital signal processor based prototype is described in relation to continuing efforts for realizing a fully self-contained active sensor system utilizing impedance-based structural health monitoring. The impedance method utilizes a piezoelectric material bonded to the structure under observation to act as both an actuator and sensor. By monitoring the electrical impedance of the piezoelectric material, insights into the health of the structured can be inferred. The active sensing system detailed in this paper interrogates a structure utilizing a self-sensing actuator and a low cost impedance method. Here, all the data processing, storage, and analysis is performed at the sensor location. A wireless transmitter is used to communicate the current status of the structure. With this new low cost, field deployable impedance analyzer, reliance on traditional expensive, bulky, and power consuming impedance analyzers is no longer necessary. A complete power analysis of the prototype is performed to determine the validity of power harvesting being utilized for self-containment of the hardware. Experimental validation of the prototype on a representative structure is also performed and compared to traditional methods of damage detection.