• Title/Summary/Keyword: digital reconstruction

Search Result 440, Processing Time 0.024 seconds

Digital image processing techniques of digital holographic PTV measurement (디지털 holographic PTV 측정을 위한 디지털 영상처리기법에 관한 연구)

  • Kim, Seok;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.1-5
    • /
    • 2005
  • The digital HPTV velocity field measurement consists of four steps: recording, numerical reconstruction, particle extraction and velocity extraction. In the velocity extraction process, we improved PTV algorithm to extract the displacement of particle each placed in 3D space. Because a digital recording device was used, some factors such as a spatial resolution, numerical aperture, and particle concentration can affect the performance of the digital HPTV. Especially, a particle concentration ($C_{o}$) affected tile reconstruction efficiency in numerical reconstruction and particle extraction process. In this paper, the reconstruction efficiency was analyzed experimentally with different particle concentration. Optimal reconstruction efficiency was shown in the range of $C_{o}$=$13\∼15$ particles/$mm^{3}$.

  • PDF

Effect of Particle Concentration on Digital Holographic PTV Measurement (입자 농도가 Digital Holographic PTV 측정에 미치는 영향에 관한 연구)

  • Kim Seok;Lee Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.929-934
    • /
    • 2006
  • The digital HPTV(holographic particle tracking velocimetry) velocity field measurement system consists of four steps: recording, numerical reconstruction, particle extraction and velocity extraction. In the velocity extraction process, we improved the two frame PTV algorithm to extract 3-D displacement information of each particle located in 3D space. Because a digital CCD camera was used, some factors such as spatial resolution, numerical aperture, and particle concentration influenced on the performance of the developed digital HPTV. Especially, the particle concentration $(C_o)$ affected the reconstruction efficiency and recovery ratio in the numerical reconstruction and particle extraction procedure. In this paper, the effect of particle concentration reconstruction efficiency and recovery ratio were analyzed experimentally. Optimal particle concentration was found to be in the range of $C_o=11{\sim}17\;particles/mm^3$.

Shrink-Wrapped Boundary Face Algorithm for Mesh Reconstruction from Unorganized Points

  • Koo, Bon-Ki;Choi, Young-Kyu;Chu, Chang-Woo;Kim, Jae-Chul;Choi, Byoung-Tae
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.235-238
    • /
    • 2005
  • A new mesh reconstruction scheme for approximating a surface from a set of unorganized 3D points is proposed. The proposed method, called a shrink-wrapped boundary face (SWBF) algorithm, produces the final surface by iteratively shrinking the initial mesh generated from the definition of the boundary faces. SWBF surmounts the genus-0 spherical topology restriction of previous shrink-wrapping-based mesh generation techniques and can be applied to any type of surface topology. Furthermore, SWBF is significantly faster than a related algorithm of Jeong and others, as SWBF requires only a local nearest-point-search in the shrinking process. Our experiments show that SWBF is very robust and efficient for surface reconstruction from an unorganized point cloud.

  • PDF

Recording and Reconstruction of large object area by using Reflection type Digital Holography Microscope System (반사형 디지털 홀로그래피 현미경 시스템에서의 조사면적 및 재생면적의 확대기록)

  • Choi, Kyu-Hwan;Kim, Sung-Kyu;Cho, D.;Yoon, Seon-Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.335-341
    • /
    • 2006
  • A modified Michelson interferometer type digital holography microscopy system is developed. There is a problem about recording and numerical reconstruction area at the microscopy application of Michelson type interferometer structure in the digital holography field. In this paper, to overcome this problem, we developed a new reflection type digital holography microscope system and increased recording and numerical reconstruction area of target object.

Deformable Surface 3D Reconstruction from a Single Image by Linear Programming

  • Ma, Wenjuan;Sun, Shusen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3121-3142
    • /
    • 2017
  • We present a method for 3D shape reconstruction of inextensible deformable surfaces from a single image. The key of our approach is to represent the surface as a 3D triangulated mesh and formulate the reconstruction problem as a sequence of Linear Programming (LP) problems. The LP problem consists of data constraints which are 3D-to-2D keypoint correspondences and shape constraints which are designed to retain original lengths of mesh edges. We use a closed-form method to generate an initial structure, then refine this structure by solving the LP problem iteratively. Compared with previous methods, ours neither involves smoothness constraints nor temporal consistency, which enables us to recover shapes of surfaces with various deformations from a single image. The robustness and accuracy of our approach are evaluated quantitatively on synthetic data and qualitatively on real data.

AUTOMATIC IDENTIFICATION OF ROOF TYPES AND ROOF MODELING USING LIDAR

  • Kim, Heung-Sik;Chang, Hwi-Jeong;Cho, Woo-Sug
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.83-86
    • /
    • 2005
  • This paper presents a method for point-based 3D building reconstruction using LiDAR data and digital map. The proposed method consists of three processes: extraction of building roof points, identification of roof types, and 3D building reconstruction. After extracting points inside the polygon of building, the ground surface, wall and tree points among the extracted points are removed through the filtering process. The filtered points are then fitted into the flat plane using ODR(Orthogonal Distance Regression). If the fitting error is within the predefined threshold, the surface is classified as a flat roof. Otherwise, the surface is fitted and classified into a gable or arch roof through RMSE analysis. Based on the roof types identified in automated fashion, the 3D building reconstruction is performed. Experimental results showed that the proposed method classified successfully three different types of roof and that the fusion of LiDAR data and digital map could be a feasible method of modelling 3D building reconstruction.

  • PDF

A Study on pipelines of a media content production based on digital reconstruction (디지털 복원에 기반한 영상콘텐츠 프로덕션의 파이프라인 연구 -카이스트 문화기술연구센터 디지털 헤리티지 그룹의 사례연구를 중심으로-)

  • Choi, Yang-Hyun;Kim, Tak-Hwan
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1257-1264
    • /
    • 2009
  • In regard to media contents of digital heritage reconstruction, they are actively produced in museums, art galleries and special exhibitions. However, there is no concrete guideline for the productions and the pipelines are not systematic either. This makes the process ineffective regarding time and cost. Media contents production of digital heritage reconstruction might seem similar to film or documentary production, but it is important to construct its specific pipeline based on its specific purpose. The digital Heritage group in research center for culture technology of KAIST produced media contents which digitally reconstructed various heritages such as Persepolis, Iranian remains, with National museum of Korea, Sukgulam, and Hue, an ancient city in Vietnam, with Cultural heritage administration of Korea. From these experiences and case studies, this paper will present a pipeline model for efficient production.

  • PDF

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

Digital immersive experiences with the future of shelf painting -From "Kandinsky, the Abstract Odyssey."

  • Feng Tianshi
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.123-127
    • /
    • 2024
  • In the early 20th century, Walter Benjamin analyzed the changes in the value of traditional art forms under the industrial era and the changes in the aesthetic attitude of the masses. A century later, in the contemporary multi-art world, the traditional medium of shelf painting is once again experiencing a similar situation as the last century. Emerging technology display modes such as digital virtual reality and digital immersive experience can achieve digital reproduction of paintings on shelves and reach a certain level of performance, which once again shocks the public's aesthetic perception. This paper attempts to illustrate the outstanding characteristics of the new art form after digital reconstruction by exploring the transformation and sublimation of digital technology to shelf painting. We predict that art research on future reality and augmented reality according to the artificial intelligence era will be conducted in depth in the future.

Measurement of 3D Flow inside Micro-tube Using Digital Holographic PTV Technique (디지털 Holographic PTV기법을 이용한 미세튜브 내부 3차원 유동장 측정)

  • Kim, Seok;Kim, Ju-Hee;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.177-178
    • /
    • 2006
  • Digital holographic particle tracking velocimetry (HPTV) is developed by single high-speed camera and single continuous laser with long coherent length. This system can directly capture 4000 hologram fringe images for 1 second through a camera computer memory. The 3D particle location is made of the reconstruction by using a computer hologram algorithm. This system can successfully be applied to instantaneous 3D velocity measurement in the water flow inside a micro-tube. The average of 100 instantaneous velocity vectors is obtained by reconstruction and tracking with the time of evolution of recorded fringes images. In the near future, we will apply this technique to measure 3D flow information inside various micro structures.

  • PDF