• Title/Summary/Keyword: digital light processing

Search Result 190, Processing Time 0.03 seconds

Image Quality Evaluation of Medical Image Enhancement Parameters in the Digital Radiography System (디지털 방사선시스템에서 영상증강 파라미터의 영상특성 평가)

  • Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2010
  • Digital imaging detectors can use a variety of detection materials to convert X-ray radiation either to light or directly to electron charge. Many detectors such as amorphous silicon flat panels, CCDs, and CMOS photodiode arrays incorporate a scintillator screen to convert x-ray to light. The digital radiography systems based on semiconductor detectors, commonly referred to as flat panel detectors, are gaining popularity in the clinical & hospital. The X-ray detectors are described between a-Silicon based indirect type and a-Selenium based direct type. The DRS of detectors is used to convert the x-ray to electron hole pairs. Image processing is described by specific image features: Latitude compression, Contrast enhancement, Edge enhancement, Look up table, Noise suppression. The image features are tuned independently. The final enhancement result is a combination of all image features. The parameters are altered by using specific image features in the different several hospitals. The image in a radiological report consists of two image evaluation processes: Clinical image parameters and MTF is a descriptor of the spatial resolution of a digital imaging system. We used the edge test phantom and exposure procedure described in the IEC 61267 to obtain an edge spread function from which the MTF is calculated. We can compare image in the processing parameters to change between original and processed image data. The angle of the edge with respect to the axes of detector was varied in order to determine the MTF as a function of direction. Each MTF is integrated within the spatial resolution interval of 1.35-11.70 cycles/mm at the 50% MTF point. Each image enhancement parameters consists of edge, frequency, contrast, LUT, noise, sensitometry curve, threshold level, windows. The digital device is also shown to have good uniformity of MTF and image parameters across its modality. The measurements reported here represent a comprehensive evaluation of digital radiography system designed for use in the DRS. The results indicate that the parameter enables very good image quality in the digital radiography. Of course, the quality of image from a parameter is determined by other digital devices in addition to the proper clinical image.

Correlation between UV-dose and Shrinkage amounts of Post-curing Process for Precise Fabrication of Dental Model using DLP 3D Printer (DLP 공정을 이용한 정밀 치아모델 제작에서 UV 조사량과 후경화 수축률의 상관관계 분석)

  • Shin, Dong-Hun;Park, Young-Min;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2018
  • Nowadays, additive manufacturing (AM) technology is a promising process to fabricate complex shaped devices applied in medical and dental services. Among the AM processes, a DLP (digital light processing) type 3D printing process has some advantages, such as high precision, relatively low cost, etc. In this work, we propose a simple method to fabricate precise dental models using a DLP 3D printer. After 3D printing, a part is commonly post-cured using secondary UV-curing equipment for complete polymerization. However, some shrinkage occurs during the post-curing process, so we adaptively control the UV-exposure time on each layer for over- or under-curing to change the local shape-size of a part in the DLP process. From the results, the shrinkage amounts in the post-curing process vary due to the UV-dose in 3D printing. We believe that the proposed method can be utilized to fabricate dental models precisely, even with a change of the 3D CAD model.

Analysis of the quality of dental prostheses printed by digital light-processing technology (디지털 광공정 방식에 의해 출력된 치과용 보철물의 품질 분석)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.42 no.3
    • /
    • pp.197-201
    • /
    • 2020
  • Purpose: This study aimed to assess the quality of dental prostheses printed by digital light-processing (DLP) technology. Methods: Ten experimental models were prepared. The ten specimens that were printed by DLP technology constituted the DLP group. The ten specimens that were produced in the same model by the casting method constituted the control group. The marginal gaps of the 20 specimens produced were measured. These gaps were measured by a silicon replica technique at two abutments of the specimen. Therefore, 20 marginal gaps were measured in each group. An independent sample t-test was performed to compare the marginal gaps measured in the two groups (α=0.05). Results: According to the results of the measurement, there was a significant difference between the mean marginal gap of the control group (78.8 ㎛) and that of the DLP group (91.5 ㎛), p<0.001. Conclusion: Although the mean marginal gaps of dental fixed prostheses produced by the DLP method was higher than the mean marginal gap of those produced by the casting method, it was considered to be within the clinical threshold value suggested by some previous studies.

A Real-time Compact Structured-light based Range Sensing System

  • Hong, Byung-Joo;Park, Chan-Oh;Seo, Nam-Seok;Cho, Jun-Dong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.193-202
    • /
    • 2012
  • In this paper, we propose a new approach for compact range sensor system for real-time robot applications. Instead of using off-the-shelf camera and projector, we devise a compact system with a CMOS image-sensor and a DMD (Digital Micro-mirror Device) that yields smaller dimension ($168{\times}50{\times}60mm$) and lighter weight (500g). We also realize one chip hard-wired processing of projection of structured-light and computing the range by exploiting correspondences between CMOS images-ensor and DMD. This application-specific chip processing is implemented on an FPGA in real-time. Our range acquisition system performs 30 times faster than the same implementation in software. We also devise an efficient methodology to identify a proper light intensity to enhance the quality of range sensor and minimize the decoding error. Our experimental results show that the total-error is reduced by 16% compared to the average case.

Light-weight Gender Classification and Age Estimation based on Ensemble Multi-tasking Deep Learning (앙상블 멀티태스킹 딥러닝 기반 경량 성별 분류 및 나이별 추정)

  • Huy Tran, Quoc Bao;Park, JongHyeon;Chung, SunTae
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.39-51
    • /
    • 2022
  • Image-based gender classification and age estimation of human are classic problems in computer vision. Most of researches in this field focus just only one task of either gender classification or age estimation and most of the reported methods for each task focus on accuracy performance and are not computationally light. Thus, running both tasks together simultaneously on low cost mobile or embedded systems with limited cpu processing speed and memory capacity are practically prohibited. In this paper, we propose a novel light-weight gender classification and age estimation method based on ensemble multitasking deep learning with light-weight processing neural network architecture, which processes both gender classification and age estimation simultaneously and in real-time even for embedded systems. Through experiments over various well-known datasets, it is shown that the proposed method performs comparably to the state-of-the-art gender classification and/or age estimation methods with respect to accuracy and runs fast enough (average 14fps) on a Jestson Nano embedded board.

Analysis of Blood Cell Images Using Smartphone-based Mobile SmartScope (스마트폰 기반 Mobile SmartScope를 이용한 혈구 영상 분석)

  • Park, Choonho;Cho, Myoung-Ock;Lee, Donghee;Kim, Jung Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.2
    • /
    • pp.25-31
    • /
    • 2012
  • High-performance smartphones, equipped with a digital camera and an application software, can render conventional bench-top laboratory instruments mobile at affordable costs. As the smartphone-based devices are portable and wireless, they have wide applications especially in providing point-of-care (POC) tests in resource-constrained areas. We developed a hand-held diagnostic system, Mobile SmartScope, which consists of a small optical unit integrated with a smartphone. The performance of the SmartScope was favorably compared with that of conventional light microscopy in detecting and quantifying red blood cells. We also evaluated the fluorescence detection limit of the SmartScope incorporated with a blue light-emitting diode and appropriate optical filters by using fluorescently labeled microbeads for intensity calibration.

Image Data Processing System for Satellite

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Youn Heong-Sik;Paik Hong Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.486-488
    • /
    • 2004
  • The SRI (Super Resolution Imager) uses the CCD (Charge coupled device) detector that is used to convert the light into electronic data. The purpose of the SRI is to obtain data for high resolution images by converting incoming light into digital stream of pixel data. The SRI has a high resolution, so this electronic system needs more fast imaging data processing, detector control and data transmission systems. This report describes the required system specification and manufactured electronic system for satellite.

  • PDF

A Study on Visible Light Communication Indoor location of iGS Robot (가시광통신을 이용한 실내형 자율 주행 로봇의 위치 추정에 관한 연구)

  • Park, Ki-Hyun;Jo, Kyung-Hwa;Lee, Jang-Woo;Lee, Seung-Yup;Kim, Eung-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.377-378
    • /
    • 2015
  • 실내형 자율 주행 로봇에서의 가장 중요한 기술력은 IGS(indoor GPS System)라 할 수 있다. 재난로봇이나 정찰로봇, 경계로봇등 새로운 로봇의 영역이 늘어남에 따라 실내에서 로봇을 안전하게 구동시키는 연구가 활발히 진행되고 있다. 기존 GPS를 사용할 수 없는 실내에서, LED 조명으로 통신이 가능한 가시광통신은 실내위치 정보를 정밀히 파악하기에 적합하다. 이에 가시광통신을 이용하여 LED 조명별 기준위치를 파악하는 서로 다른 16진수의 데이터를 전송하고, 그 위치를 파악하여 LED 조명의 위치를 식별할 수 있음을 확인한다. 이러한 실험결과를 통하여 가시광통신을 이용해 실내형 자율 주행 로봇의 실내 위치 추정 시스템을 제안한다.

Development for Automatic Thickness Measurment System by Digital Image Processing (디지탈 이미지 프로세싱을 이용한 자동두께 측정장치 개발)

  • 김영일;이상길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.395-401
    • /
    • 1993
  • The purpose of this paper is to develop an automatic measuring system based on the digital image processing which can be applied to the in-process measurement of the characteristics of the thin thickness. The derivative operators is used for edge detection in gray level image. This concept can be easiliy illustrated with the aid of object shows an image of a simple light object on a dark background, the gray level profile along a horizontal scan line of the image, and the first and second derivatives of the profile. The first derivative of an edge modeled in this manner is () in all regions of constant gray level, and assumes a constant value during a gray level transition. The experimental results indicate that the developed qutomatic inspection system can be applied in real situation.

  • PDF

Extration of Digital Elevation Models Using InSAR Processing Techique (InSAR 처리기법에 의한 수치고도모형의 추출)

  • Lee Jin-Duk;Yeon Sang-Ho;Bae Sang-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.142-145
    • /
    • 2005
  • As SAR data have the strong point that is not influenced by weather or light amount compared with optical sensor data, they have high usfulness as temporary analysis fast and can be collected in case of like disaster. This study is to extract DEM from L-band data of JERS-1 SAR imagery using InSAR and DInSAR processing techniques. The accuracies of DEM extracted from the SAR data were evaluated by employing DEM derived from the digital topographic maps of 1:5000 scale as standard data.

  • PDF