• Title/Summary/Keyword: digital intraoral scanner

Search Result 95, Processing Time 0.03 seconds

Application of various digital technique on full mouth rehabilitation: A case report (디지털 기술을 활용한 전악 고정성 보철 수복 증례)

  • Bae, Min-Soo;Song, Kwang-Yeob;Ahn, Seung-Geun;Park, Ju-Mi;Lee, Jung-Jin;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.43-54
    • /
    • 2021
  • Based on rapid improvement in digital fields, many advanced digital technologies are utilized in prosthodontic treatment. Especially, intraoral scanners and 3D printing technology are commonly used, and facial scanning technology is recently being attempted to be part of these digital routines. This case report aims to introduce a digital procedure using the intraoral scanner, facial scanner, and 3D printing technology to create definitive restorations, which are esthetic and harmonious with patient's face. From thoroughly evaluated full-mouth provisional restoration which was manufactured and fitted conventionally, definitive prostheses were fabricated using various digital technique. Stable occlusion with functionally and aesthetically satisfying results were achieved.

The user-friendly, ergonomic design aspect of recent intraoral scanners: a literature review (사용자 친화적 인체공학에 따른 구내스캐너 디자인에 대한 고찰)

  • Park, Hye-Nan;Kim, Won-Hee;Lim, Young-Jun;Lee, Won-Jin;Han, Jung-Suk;Lee, Seung-Pyo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.3
    • /
    • pp.221-230
    • /
    • 2015
  • Recently, traditional impression has been rapidly replaced by digital impression using intraoral scanning. There are more than 7 types of intraoral scanners available in the dental market. It is difficult to make effective strategic choices due to a lack of standards and guidelines for optimal intraoral scanning devices. So far, little has been reported about evaluating the ergonomic aspect of these scanners. This literature review compares current intraoral scanning systems based on different types of handles and suggests the most comfortable, user-friendly intraoral scanners from an ergonomic standpoint.

Application and consideration of digital technology for removable complete denture (총의치 제작에 적용 가능한 디지털 기술과 임상적 고찰)

  • Lee, Jung-Jin;Song, Kwang-Yeob;Park, Ju-Mi
    • The Journal of the Korean dental association
    • /
    • v.57 no.9
    • /
    • pp.534-543
    • /
    • 2019
  • Digital technology has changed various aspects of the clinical dentistry. The intraoral scanner and Computer-aided design / Computer-aided manufacturing (CAD-CAM) technology are widely used in fabricating fixed prostheses and in implant surgery. These technologies greatly improved the efficiency of clinical and laboratory procedures. With all newly introduced software, devices, and clinical studies, digital technology has been actively applied in removable prostheses. It is now possible to fabricate the removable prostheses more quickly and easily through subtractive and additive manufacturing. Various clinical and laboratory protocols were introduced by many manufacturers. The purpose of this review is to summarize the literature on digital technology for fabricating complete denture with current status and future perspectives.

  • PDF

Digital intraoral impression for immediate provisional restoration of maxillary single implant: A case report (구강 내 디지털 인상채득을 통한 상악 전치부 임플란트 즉시 임시 보철 수복 증례)

  • Chang, Yun-Jeong;Kim, Hong-Jun;Song, Mi-Kyoung;Moon, Ji-Eun;Lee, Hal-La;Park, Chan-Ik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.3
    • /
    • pp.234-243
    • /
    • 2015
  • Developing of digital technique, it is possible to fabricate implant prostheses for edentulous area using intraoral 3-dimentional information throughout implant diagnosis and treatment process. It is being changed that from the method using CAD/CAM, producing prostheses by model scanning after conventional impression and model processing, to the method of fabricating implant provisional restorations and customized abutments by digital impression after connecting digital impression copings (scanbody) and implant fixtures without models. But, this digital method has not been actively used for implant prostheses not yet. Specially, it is short of intraoral digital impression cases for immediate provisional restorations of the maxillary anterior implants. The gingival contour impression of maxillary anterior area is very important for esthetic restorations. Accordingly, in this case report, the using a digital impression coping (scanbody) and digital impression by CEREC Omnicam (Sirona, Bensheim, Germany) or Trios (3shape, Copenhagen, Denmark) were introduced for immediate provisional restorations in 3 cases needed a single implant restoration in maxillary anterior area. The clinical results were satisfactory on the convenience and accuracy of digital impression technique and the good esthetics of final restorations.

Posterior single implant prosthesis using scannable healing abutment (스캔이 가능한 치유지대주를 이용한 구치부 단일 임플란트 수복 증례)

  • Kim, Seong-Min;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.432-438
    • /
    • 2019
  • Accurate impression taking for the success of implant prosthesis is a very important process. Methods of taking implant impression include the conventional method using impression coping and impression material, and the digital method using an intraoral scanner and scanbody. However, the impression coping or the scanbody must install after remove healing abutment. Because of this, the dentist must repeat the process of removing and installing the healing abutment, the impression coping or the scanbody several times. In addition, the impression coping or the scanbody rises higher than the occlusal surface, so the patient has the inconvenience of constantly maintaining the open state. Recently, a scannable healing abutment, which can be scanned by a intraoral scanner directly, without the need to remove the healing abutment by applying a scannable part of the scanbody to the healing abutment, was introduced. We present a case of single posterior implant prosthesis using a scannable healing abutment.

Use of measuring gauges for in vivo accuracy analysis of intraoral scanners: a pilot study

  • Iturrate, Mikel;Amezua, Xabier;Garikano, Xabier;Solaberrieta, Eneko
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.191-204
    • /
    • 2021
  • PURPOSE. The purpose of this study is to present a methodology to evaluate the accuracy of intraoral scanners (IOS) used in vivo. MATERIALS AND METHODS. A specific feature-based gauge was designed, manufactured, and measured in a coordinate measuring machine (CMM), obtaining reference distances and angles. Then, 10 scans were taken by an IOS with the gauge in the patient's mouth and from the obtained stereolithography (STL) files, a total of 40 distances and 150 angles were measured and compared with the gauge's reference values. In order to provide a comparison, there were defined distance and angle groups in accordance with the increasing scanning area: from a short span area to a complete-arch scanning extension. Data was analyzed using software for statistical analysis. RESULTS. Deviations in measured distances showed that accuracy worsened as the scanning area increased: trueness varied from 0.018 ± 0.021 mm in a distance equivalent to the space spanning a four-unit bridge to 0.106 ± 0.08 mm in a space equivalent to a complete arch. Precision ranged from 0.015 ± 0.03 mm to 0.077 ± 0.073 mm in the same two areas. When analyzing angles, deviations did not show such a worsening pattern. In addition, deviations in angle measurement values were low and there were no calculated significant differences among angle groups. CONCLUSION. Currently, there is no standardized procedure to assess the accuracy of IOS in vivo, and the results show that the proposed methodology can contribute to this purpose. The deviations measured in the study show a worsening accuracy when increasing the length of the scanning area.

Axial displacement in single-tooth implant restoration: Case report (임플란트 단일 치아 수복 시 수직 침하와 인접치와의 위치 변화: 증례 보고)

  • Jeong, Seung-Hoe;Kim, Sunjai;Chang, Jae-Seung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.126-133
    • /
    • 2021
  • Axial displacement of an implant-supported prosthesis is frequently reported in clinical and laboratory studies. However, limited information is available about the behavior of the axial displacement of implant-supported prostheses functioning in intraoral situations. The present case report evaluated the three-dimensional displacement of posterior single implant-supported prostheses in 2 different patients. Internal connection type implants were placed, and screw and cement-retained prosthesis (SCRP) type prosthesis were delivered after an appropriate healing period. Intraoral digital scans were performed using an intraoral scanner (Cerec Omnicam, Dentsply Sirona, USA) on the day of crown delivery and one week, one month, and one year after delivery. The amount of 3-dimensional displacement of the prosthesis was evaluated by using a digital inspection software (Geomagic Control X, 3D systems, USA). The axial displacement of implant-supported prosthesis occurred in both patients. Furthermore, the amount of displacement increased over time.

A novel method for testing accuracy of bite registration using intraoral scanners

  • Lydia Kakali;Demetrios J. Halazonetis
    • The korean journal of orthodontics
    • /
    • v.53 no.4
    • /
    • pp.254-263
    • /
    • 2023
  • Objective: The evidence on the accuracy of bite registration using intraoral scanners is sparse. This study aimed to develop a new method for evaluating bite registration accuracy using intraoral scanners. Methods: Two different types of models were used; 10 stone models and 10 with acrylic resin teeth. A triangular frame with cylindrical posts at each apex (one anterior and two posteriors) was digitally designed and manufactured using three-dimensional (3D) printing. Such a structure was fitted in the lingual space of each maxillary and mandibular model so that, in occlusion, the posts would contact their opposing counterparts, enforcing a small interocclusal gap between the two arches. This ensured no tooth interference and full contact between opposing posts. Bite registration accuracy was evaluated by measuring the distance between opposing posts, with small values indicating high-accuracy. Three intraoral scanners were used: Medit i500, Primescan, and Trios 4. Viewbox software was used to measure the distance between opposing posts and compute roll and pitch. Results: The average maximum error in interocclusal registration exceeded 50 ㎛. Roll and pitch orientation errors ranged above 0.1 degrees, implying an additional interocclusal error of around 40 ㎛ or more. The models with acrylic teeth exhibited higher errors. Conclusions: A method that avoids the need for reference hardware and the imprecision of locating reference points on tooth surfaces, and offers simplicity in the assessment of bite registration with an intraoral scanner, was developed. These results suggest that intraoral scanners may exhibit clinically significant errors in reproducing the interocclusal relationships.

A procedure for the computer-guided implant planning: A narrative review (임플란트 가이드 수술을 위한 Planning 방식에 대한 고찰)

  • Kim, Jong-Eun;Kim, Nam-Hoon;Park, Ji-Hyun;Shim, June-Sung
    • The Journal of the Korean dental association
    • /
    • v.54 no.2
    • /
    • pp.108-122
    • /
    • 2016
  • Prosthetic-driven implant placement is a concept considering the dental implant restoration first based on the final form of that prosthesis to be restored. The latest development of the imaging technology and digital dentistry was able to be obtained the high quality images of CBCT with low radiation exposure and it has also enabled the process to reconstruct the intraoral state in three dimensions due to the development of the intraoral, model and impression scanner. Computer-guided implant placement simulations and template production was able to be more widely used in this context. In this narrative review, the features and the types of implant surgical guides will be introduced. It will also be described the diagnosis and treatment plan using computerguided implant software to reduce the number of visit and to increase the accuracy of the implant surgery through the top-down approach based on the shape and location of the final prosthesis.

  • PDF

In-vitro evaluation of marginal and internal fit of 3-unit monolithic zirconia restorations fabricated using digital scanning technologies

  • Ozal, Cise;Ulusoy, Mutahhar
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.373-384
    • /
    • 2021
  • PURPOSE. This study aimed to compare the marginal and internal fit of 3-unit monolithic zirconia restorations that were designed by using the data obtained with the aid of intraoral and laboratory scanners. MATERIALS AND METHODS. For the fabrication of 3-unit monolithic zirconia restorations using impressions taken from the maxillary master cast, plaster cast was created and scanned in laboratory scanners (InEos X5 and D900L). The main cast was also scanned with different intraoral scanners (Omnicam [OMNI], Primescan [PS], Trios 3 [T3], Trios 4 [T4]) (n = 12 per group). Zirconia fixed partial dentures were virtually designed, produced from presintered block, and subsequently sintered. Marginal and internal discrepancy values (in ㎛) were measured by using silicone replica method under stereomicroscope. Data were statistically analyzed by using 1-way ANOVA and Kruskal Wallis tests (P<.05). RESULTS. In terms of marginal adaptation, the measurements on the canine tooth indicated better performance with intraoral scanners than those in laboratory scanners, but there was no difference among intraoral scanners (P<.05). In the premolar tooth, PS had the lowest marginal (86.9 ± 19.2 ㎛) and axial (92.4 ± 14.8 ㎛), and T4 had the lowest axio-occlusal (89.4 ± 15.6 ㎛) and occlusal (89.1 ± 13.9 ㎛) discrepancy value. In both canine and premolar teeth, the D900L was found to be the most marginally and internally inconsistent scanner. CONCLUSION. Within the limits of the study, marginal and internal discrepancy values were generally lower in intraoral scanners than in laboratory scanners. Marginal discrepancy values of scanners were clinically acceptable (< 120 ㎛), except D900L.