• Title/Summary/Keyword: digital image decimation

Search Result 6, Processing Time 0.019 seconds

A Method for Estimating Local Intelligibility for Adaptive Digital Image Decimation (적응형 디지털 영상 축소를 위한 국부 가해성 추정 기법)

  • 곽노윤
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.391-397
    • /
    • 2003
  • This paper is about the digital image decimation algorithm which generates a value of decimated element by an average of a target pixel value and a value of neighbor intelligible element to adaptively reflect the merits of ZOD method and FOD method on the decimated image. First, a target pixel located at the center of sliding window is selected, then the gradient amplitudes of its right neighbor pixel and its lower neighbor pixel are calculated using first order derivative operator respectively. Secondly, each gradient amplitude is divided by the summation result of two gradient amplitudes to generate each intelligible weight. Next, a value of neighbor intelligible element is obtained by adding a value of the right neighbor pixel times its intelligible weight to a value of the lower neighbor pixel times its intelligible weight. The decimated image can be acquired by applying the process repetitively to all pixels in input image which generates the value of decimated element by calculating the average of the target pixel value and the value of neighbor intelligible element.

  • PDF

Performance Analysis of Adaptive Corner Shrinking Algorithm for Decimating the Document Image (문서 영상 축소를 위한 적응형 코너 축소 알고리즘의 성능 분석)

  • Kwak No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.4 no.2
    • /
    • pp.211-221
    • /
    • 2003
  • The objective of this paper is performance analysis of the digital document image decimation algorithm which generates a value of decimated element by an average of a target pixel value and a value of neighbor intelligible element to adaptively reflect the merits of ZOD method and FOD method on the decimated image. First, a target pixel located at the center of sliding window is selected, then the gradient amplitudes of its right neighbor pixel and its lower neighbor pixel are calculated using first order derivative operator respectively. Secondly, each gradient amplitude is divided by the summation result of two gradient amplitudes to generate each local intelligible weight. Next, a value of neighbor intelligible element is obtained by adding a value of the right neighbor pixel times its local intelligible weight to a value of the lower neighbor pixel times its intelligible weight. The decimated image can be acquired by applying the process repetitively to all pixels in input image which generates the value of decimated element by calculating the average of the target pixel value and the value of neighbor intelligible element. In this paper, the performance comparison of proposed method and conventional methods in terms of subjective performance and hardware complexity is analyzed and the preferable approach for developing the decimation algorithm of the digital document image on the basis of this analysis result has been reviewed.

  • PDF

Design of Receiver in High-Speed digital Modem for High Resolution MRI (고속 디지털 MRI 모뎀 수신기 설계)

  • 염승기;양문환;김대진;정관진;김용권;권영철;최윤기
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.69-72
    • /
    • 2000
  • This paper shows the more improved design of MRI receiver compared to conventional one based on Elscint Spectrometer. At first, the low-cost ADC is 16 bits, 3MHz sampling A/D converter Comparing to conventional one with signal bits of 14 bits, this device with those of 16 bits helps getting Improved the image resolution improved. If frequency is designed centering around 7.6 MHz to be satisfied in 10 MHz of maximum input bandwidth of ADC. For 1st demodulation, fixed IF is used for the purpose of the implementing multi nuclei system. Control parts & partial digital parts are integrated on one chip(FPGA). In DDC(Digital Down Converter), we got required bandwidth of LPF by controlling its decimation rate. With above considerations, we designed optimal receiver for high resolution imaging to be implemented through PC interface & experimental test of receiver of MRI after receiver's fabrication.

  • PDF

Wavelet Transform Based Low Pass Filters and Interpolation Filters in Digital Image Communication Systems (디지털 영상 통신 시스템에서 웨이블릿 변환 기반 저역 필터와 보간 필터)

  • Yoo Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.4
    • /
    • pp.443-450
    • /
    • 2006
  • In digital image communication systems, YUV 4:2:0 or YUV 4:2:2 images filtered and subsampled versions of YUV 4:4:4 images are utilized and these images recover their size by an interpolation filter. Low pass filters and interpolation filters in the image communication systems are generally utilized. Thus, to improve the image quality, efficient low pass filters and interpolation filters are still required. In this paper, we propose new and efficient low pass filters and interpolation filters and their design method. The low pass filters and interpolation filters used in the MPEG-2 system were developed independently. We utilize wavelet transforms to jointly design low pass filters and interpolation filters. Simulation results show that the proposed filters are superior to the filters used in MPEG-2 in terms of PSNR. In addition, the length of the proposed interpolation filters is shorter than that of the filters used in the MPEG 2 system.

  • PDF

A Hardware Implementation of Image Scaler Based on Area Coverage Ratio (면적 점유비를 이용한 영상 스케일러의 설계)

  • 성시문;이진언;김춘호;김이섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.3
    • /
    • pp.43-53
    • /
    • 2003
  • Unlike in analog display devices, the physical screen resolution in digital devices are fixed from the manufacturing. It is a weak point on digital devices. The screen resolution displayed in digital display devices is varied. Thus, interpolation or decimation of the resolution on the display is needed to make the input pixels equal to the screen resolution., This process is called image scaling. Many researches have been developed to reduce the hardware cost and distortion of the image of image scaling algorithm. In this paper, we proposed a Winscale algorithm. which modifies the scale up/down in continuous domain to the scale up/down in discrete domain. Thus, the algorithm is suitable to digital display devices. Hardware implementation of the image scaler is performed using Verilog XL and chip is fabricated in a 0.5${\mu}{\textrm}{m}$ Samsung SOG technology. The hardware costs as well as the scalabilities are compared with the conventional image scaling algorithms that are used in other software. This Winscale algorithm is proved more scalable than other image-scaling algorithm, which has similar H/W cost. This image-scaling algorithm can be used in various digital display devices that need image scaling process.

Design and Performance Analysis of Adaptive First-Order Decimator Using Local Intelligibility (국부 가해성을 이용한 적응형 선형 축소기의 설계 및 성능 분석)

  • Kwak, No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • This paper has for its object to propose AFOD(Adaptive First-Order Decimator) which sets a value of decimated element as an average of a value of neighbor intelligible component and a output value of FOD(First-Order Decimator) for the target pixel, and to analyze its performance in terms of subjective image quality and hardware complexity. In the proposed AFOD, a target pixel located at the center of sliding window is selected first, then the gradient amplitudes of its right neighbor pixel and its lower neighbor pixel are calculated using first order derivative operator respectively. Secondly, each gradient amplitude is divided by the summation result of two gradient amplitudes to generate each local intelligible weight. Next, a value of neighbor intelligible component is defined by adding a value of the right neighbor pixel times its local intelligible weight to a value of the lower neighbor pixel times its intelligible weight. Since the proposed method adaptively reflects neighbor intelligible informations of neighbor pixels on the decimated element according to each local intelligible weight, it can effectively suppress the blurring effect being the demerit of FOD. It also possesses the advantages that it can keep the merits of FOD with the good results on average but also lower computational cost.

  • PDF