• Title/Summary/Keyword: digital image analysis

Search Result 1,496, Processing Time 0.029 seconds

The Relationship between MRO E-Commerce System and Purchase Effects

  • Kwon, Soon-Won;Kim, Young-Ei;Youn, Myoung-Kil;Jeon, Ta-Sik
    • Journal of Distribution Science
    • /
    • v.8 no.3
    • /
    • pp.5-15
    • /
    • 2010
  • Business corporations have become specialized and on the basis of various interests try to strengthen their competitiveness through a cooperative system of purchase, distribution, service and IT technology. And an advanced Internet-based electronic commerce has witnessed explosive growth and a business-to-business (B2B) electronic commerce. Through E-marketplace. business corporations achieve such diverse utilities as expenditure curtailment, process reduction and prime cost reduction. And with business depression worldwide and soaring prices of materials, many business corporations consider the introduction of comprehensive purchase of MRO (maintenance, repair and operation) materials. The Purpose of this study was to examine the definition of B2B E-marketplace and the utilities of MRO commerce correctly focusing on an empirical analysis of cases of MRO supply and purchase business corporations. The indications acquired from this research results are as follows. Firstly, as for MRO integrated purchase under the characteristics of the market environment, it had to use the supplier obligatorily through the integrated purchase on the level of CEO's decision-making or the group rather than the voluntary will of the purchasing department or the procurement department. Secondly, as for the present B2B E-marketplace MRO purchase, the purchasing agency business has formed the mainstream, but it is aiming at the diversification of the benefit by supplementing/correcting the business model such as category type, mediation business type, MRO-type advancing in the store inclusive of the purchasing agency business, keeping pace with the potential market of MRO. Thirdly, as for analysis of the products, the purchaser wants more various products and assortment of goods than those of the present time, and also to be provided with the precise product information. Especially, as the importance of the product sourcing becomes high, the whole energy has been bestowed on acquirement of the excellent suppliers. Fourth, as for use of B2B E-marketplace MRO integrated purchasing system, there are the purchasing companies complaining the inconvenience even until now, and there is the demerit spending the long time during the image move and the process treatment. It shall try to shorten the searching time and the process treatment time as the system is centered on the purchaser. In order to enhance the efficiency of MRO E-marketplace purchase, followings must be considered: First, because the importance of product sources ever increases, an excellent supplier must be secured earnestly. Second, the time of process must be reduced focusing on purchasers. B2B E-marketplace will increase and diversify electronic commerce continuously. Through MRO E-marketplace, business corporations will reduce expenditure, achieve a transparent and speedy trade, and purchase products of fine quality, thus establishing a most effective market. In addition, in this study the investigator brings focus into MRO which has not been clearly discussed in the academic and business world so far and intensively highlights an indirect material-oriented expenditure curtailment effect. By taking all the aspects of supplier, purchaser and practical economical value into account, the investigator presents a strategic direction for the successful comprehensive purchase of B2B MRO.

  • PDF

Research on Basic Investigation and Analysis for Iand Substitution Planing using High-resolution Satellite Imagery (환지계획 수립시 고해상 위성영상을 이용한 기초조사 및 분석에 관한 연구)

  • Choi, Seung Pil;Jeong, Cheol Ju;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.3-9
    • /
    • 2013
  • Various data like digital maps(1/1,000 or 1/5,000), field surveying, online materials and literatures are used for the preliminary investigation for urban development such as the feasibility evaluation, the profitability analysis, the zoning proposal, the zoning designation, and the land replotting planning. There are a couple of urban development methods like an expropriation, a replotting, a mixed-used method. The replotting method requires the consideration of land replotting types based on topography and building condition, which is not easy to gather data for the preliminary investigation maintaining the security of development planning. There are limitations of a preliminary investigation using aerial photos to detect topographic and building changes at specific period. GIS data combined with high-resolution imagery has advantages over the current dataset, which come from easy acquisition of various spatial resolution satellite images, wide swath coverage, the choice of imagery resolution satisfying a usage purpose, economic benefit comparing to aerial photos, and the calculation of distance and area on imagery from image modeling. For these reasons, the proposed method in this study enables to perform the more appropriate preliminary investigation using more accurate information.

Assessment of LODs and Positional Accuracy for 3D Model based on UAV Images (무인항공영상 기반 3D 모델의 세밀도와 위치정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo;Sung, Sang Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.197-205
    • /
    • 2020
  • Compared to aerial photogrammetry, UAV photogrammetry has advantages in acquiring and utilizing high-resolution images more quickly. The production of 3D models using UAV photogrammetry has become an important issue at a time when the applications of 3D spatial information are proliferating. Therefore, this study assessed the feasibility of utilizing 3D models produced by UAV photogrammetry through quantitative and qualitative analyses. The qualitative analysis was performed in accordance with the LODs (Level of Details) specified in the 3D Land Spatial Information Construction Regulation. The results showed that the features on planes have a high LoD while features with elevation differences have a low LoD due to the occlusion area and parallax. Quantitative analysis was performed using the 3D coordinates obtained from the CPs (Checkpoints) and edges of nearby structures. The mean errors for residuals at CPs were 0.042 m to 0.059 m in the horizontal and 0.050 m to 0.161 m in the vertical coordinates while the mean errors in the structure's edges were 0.068 m and 0.071 m in horizontal and vertical coordinates, respectively. Therefore, this study confirmed the potential of 3D models from UAV photogrammetry for analyzing the digital twin and slope as well as BIM (Building Information Modeling).

Process Development for Optimizing Sensor Placement Using 3D Information by LiDAR (LiDAR자료의 3차원 정보를 이용한 최적 Sensor 위치 선정방법론 개발)

  • Yu, Han-Seo;Lee, Woo-Kyun;Choi, Sung-Ho;Kwak, Han-Bin;Kwak, Doo-Ahn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.3-12
    • /
    • 2010
  • In previous studies, the digital measurement systems and analysis algorithms were developed by using the related techniques, such as the aerial photograph detection and high resolution satellite image process. However, these studies were limited in 2-dimensional geo-processing. Therefore, it is necessary to apply the 3-dimensional spatial information and coordinate system for higher accuracy in recognizing and locating of geo-features. The objective of this study was to develop a stochastic algorithm for the optimal sensor placement using the 3-dimensional spatial analysis method. The 3-dimensional information of the LiDAR was applied in the sensor field algorithm based on 2- and/or 3-dimensional gridded points. This study was conducted with three case studies using the optimal sensor placement algorithms; the first case was based on 2-dimensional space without obstacles(2D-non obstacles), the second case was based on 2-dimensional space with obstacles(2D-obstacles), and lastly, the third case was based on 3-dimensional space with obstacles(3D-obstacles). Finally, this study suggested the methodology for the optimal sensor placement - especially, for ground-settled sensors - using the LiDAR data, and it showed the possibility of algorithm application in the information collection using sensors.

The Resolution Effects of the Satellite images on the Interpretability of Geographic Informations - Laying Emphasis on the Interpretability and the Fractal Dimension (위성영상의 해상력에 따른 지리정보의 판독 - 판독가능성과 프랙탈 차원을 중심으로)

  • Kim, Yong-Il;Seo, Byoung-Jun;Ku, Bon-Chul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.2 s.16
    • /
    • pp.61-69
    • /
    • 2000
  • Until now, the extraction of information on geographic features and the compilation of maps from satellite imagery has had many limitations because of its lower resolution compared to aerial photos to the recent. However, it is expected that the availability of high resolution satellite imagery whose spatial resolution is about 1m will reduce such limitations. Currently, a compilation of national-wide digital base maps is going on to construct the National Geographic Information Systems in Korea. It will be used for many application field of the social welfare. Therefore, in this study, we suggest that satellite imagery can help it and we have experimented on the possibility of detecting and interpreting geographic data using satellite imagery of various spatial resolutions. The interpretability and detectability of 46 features in 6 categories was experimented with 6 kinds of images of different resolutions. As a subsequent procedure, we have performed the fractal analysis for a quality test of the texture information. Through the fractal analysis, we could show that texture information and probability of discrimination increases as the spatial resolution of the image increases. Based on the results of this experiment, we could suggest the possibility of the renewal and construction of the National-wide Geographic Information Systems database using satellite imagery, as well as of examining appropriate spatial resolutions for objects of interest.

  • PDF

Accuracy of Automatic Cephalometric Analysis Programs on Lateral Cephalograms of Preadolescent Children (소아 환자 대상의 자동 계측점 식별 프로그램의 정확성 평가)

  • Song, Min Sun;Kim, Seong-Oh;Kim, Ik-Hwan;Kang, Chung-min;Song, Je Seon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.3
    • /
    • pp.245-254
    • /
    • 2021
  • The aim of this study was to evaluate the accuracy of 3 different automatic landmark identification programs on lateral cephalgrams and the clinical acceptability in pediatric dentistry. Sixty digital cephalometric radiographs of 7 to 12 years old healthy children were randomly selected. Fourteen landmarks were chosen for assessment and the mean of 3 measurements of each landmark by a single examiner was defined as the baseline landmarks. The mean difference between an automatically identified landmark and the baseline landmark was measured for each landmark on each image. The total mean difference of 3 automatic programs compared to the baseline landmarks were 2.53 ± 1.63 mm. Errors among 3 programs were not significantly different for 12 of 14 landmarks except Orbitale and Gonion. The automatic landmark identification programs showed significant higher mean detection errors than the manual method. The programs couldn't be used as the 1st tool to replace human examiners. But considering short consuming time, these results indicate that all 3 programs have sufficient validity to be used in pediatric dental clinic.

A Study on the Change of Gender Expression in Animation and Live Action Films Characters : In the Enneagram Perspective (<알라딘> 애니메이션과 실사영화 캐릭터 젠더표현 변화에 관한 연구 : 에니어그램을 중심으로)

  • Jeong, Jae-Pil
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.599-606
    • /
    • 2022
  • This study investigates trends and changes in gender expression in film and animation. It compares how gender, race, and class discrimination that was socially and culturally expressed differently in past and modern media contents. Indiscriminate content appreciation by the "digital native" generation is likely to unconsciously create false stereotypes. In this study, 「Aladdin」(1992) and 「Aladdin」(2019) were analyzed. This study looks at in the characters have changed since the original, which was a 2D animation in 1992, was re-released as a live-action film in 2019. For character analysis, we compare and analyze major characters and find out the differences based on the nine personality types of Enneagram, which define human personality types. As a result, Princess Jasmine's character change was remarkable. In the past, Disney animations had the majority of patriarchal and male-dependent princess characters, but now Disney is aiming for self-directed and independent female characters. Also, scenes that could instill stereotypes of gender, race, and class were changed. Disney's change can be seen as expressing the gender image that the public wants. Analysis of the change in character's personality in these works can be a useful methodology for creating attractive characters for the public.

Development of Plant Phenology and Snow Cover Detection Technique in Mountains using Internet Protocol Camera System (무인카메라 기반 산악지역 식물계절 및 적설 탐지 기술 개발)

  • Keunchang, Jang;Jea-Chul, Kim;Junghwa, Chun;Seokil, Jang;Chi Hyeon, Ahn;Bong Cheol, Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.318-329
    • /
    • 2022
  • Plant phenology including flowering, leaf unfolding, and leaf coloring in a forest is important to understand the forest ecosystem. Temperature rise due to recent climate change, however, can lead to plant phenology change as well as snowfall in winter season. Therefore, accurate monitoring of forest environment changes such as plant phenology and snow cover is essential to understand the climate change effect on forest management. These changes can monitor using a digital camera system. This paper introduces the detection methods for plant phenology and snow cover at the mountain region using an unmanned camera system that is a way to monitor the change of forest environment. In this study, the Automatic Mountain Meteorology Stations (AMOS) operated by Korea Forest Service (KFS) were selected as the testbed sites in order to systematize the plant phenology and snow cover detection in complex mountain areas. Multi-directional Internet Protocol (IP) camera system that is a kind of unmanned camera was installed at AMOS located in Seoul, Pyeongchang, Geochang, and Uljin. To detect the forest plant phenology and snow cover, the Red-Green-Blue (RGB) analysis based on the IP camera imagery was developed. The results produced by using image analysis captured from IP camera showed good performance in comparison with in-situ data. This result indicates that the utilization technique of IP camera system can capture the forest environment effectively and can be applied to various forest fields such as secure safety, forest ecosystem and disaster management, forestry, etc.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

The Relationship Analysis between the Epicenter and Lineaments in the Odaesan Area using Satellite Images and Shaded Relief Maps (위성영상과 음영기복도를 이용한 오대산 지역 진앙의 위치와 선구조선의 관계 분석)

  • CHA, Sung-Eun;CHI, Kwang-Hoon;JO, Hyun-Woo;KIM, Eun-Ji;LEE, Woo-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.61-74
    • /
    • 2016
  • The purpose of this paper is to analyze the relationship between the location of the epicenter of a medium-sized earthquake(magnitude 4.8) that occurred on January 20, 2007 in the Odaesan area with lineament features using a shaded relief map(1/25,000 scale) and satellite images from LANDSAT-8 and KOMPSAT-2. Previous studies have analyzed lineament features in tectonic settings primarily by examining two-dimensional satellite images and shaded relief maps. These methods, however, limit the application of the visual interpretation of relief features long considered as the major component of lineament extraction. To overcome some existing limitations of two-dimensional images, this study examined three-dimensional images, produced from a Digital Elevation Model and drainage network map, for lineament extraction. This approach reduces mapping errors introduced by visual interpretation. In addition, spline interpolation was conducted to produce density maps of lineament frequency, intersection, and length required to estimate the density of lineament at the epicenter of the earthquake. An algorithm was developed to compute the Value of the Relative Density(VRD) representing the relative density of lineament from the map. The VRD is the lineament density of each map grid divided by the maximum density value from the map. As such, it is a quantified value that indicates the concentration level of the lineament density across the area impacted by the earthquake. Using this algorithm, the VRD calculated at the earthquake epicenter using the lineament's frequency, intersection, and length density maps ranged from approximately 0.60(min) to 0.90(max). However, because there were differences in mapped images such as those for solar altitude and azimuth, the mean of VRD was used rather than those categorized by the images. The results show that the average frequency of VRD was approximately 0.85, which was 21% higher than the intersection and length of VRD, demonstrating the close relationship that exists between lineament and the epicenter. Therefore, it is concluded that the density map analysis described in this study, based on lineament extraction, is valid and can be used as a primary data analysis tool for earthquake research in the future.